IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v379y2025ics0306261924022979.html
   My bibliography  Save this article

Testing of a multi-energy complementary absorption heat pump prototype for combined cooling and heating with large temperature range from − 20 to 90 °C

Author

Listed:
  • Lu, Ding
  • Wang, Ligang
  • Cheng, Rui
  • Shen, Tao
  • Chen, Rundong
  • Gong, Maoqiong

Abstract

In the process of carbon neutrality, the comprehensive utilization of clean and renewable energy, including solar, geothermal and biomass, is a potential solution to the low-carbon cooling and heating in distributed areas with weak power grids, such as countryside and suburban. In this paper, an absorption heat pump with multi-energy complementary was built to provide combined cooling and heating. Solar energy was collected through an evacuated tube collector using heat conduction oil, and a gas boiler was adopted to further heat the oil and balance the solar thermal fluctuations. Heat collected in the oil circulation was used to drive an ammonia-water absorption heat pump. A control strategy was proposed to achieve stable energy supply under different weather condition, and efficient operation in wide temperature zone. Environmental test of the prototype was performed in Jinan. The results showed that the prototype ran stably to provide 5-15 kW cooling at −20 to 10 °C, and 20-35 kW heating at 40 to 90 °C, with solar thermal ratio of 20–35 % in different weather conditions, and the renewable energy ratio in heating mode could exceed 55 % through further recovery of ambient heat. Furthermore, the COP for cooling reached 0.30–0.43 at −20 °C cold supply, and 0.70–0.78 at 7 °C cold supply, with cooling water temperatures varied from 30 to 20 °C; and the COP of heating reached 1.40–1.90 at 45 °C heat supply, and 1.35–1.56 at 80 °C heat supply, with evaporation temperature varied from −15 to 20 °C. Results demonstrated that the proposed prototype has significant energy and carbon reduction potential, and is a solution for combined cooling and heating in distributed areas.

Suggested Citation

  • Lu, Ding & Wang, Ligang & Cheng, Rui & Shen, Tao & Chen, Rundong & Gong, Maoqiong, 2025. "Testing of a multi-energy complementary absorption heat pump prototype for combined cooling and heating with large temperature range from − 20 to 90 °C," Applied Energy, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022979
    DOI: 10.1016/j.apenergy.2024.124914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924022979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    2. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
    3. Wu, Wei & You, Tian & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump," Applied Energy, Elsevier, vol. 126(C), pages 113-122.
    4. Amiri Rad, Ehsan & Davoodi, Vajihe, 2021. "Thermo-economic evaluation of a hybrid solar-gas driven and air-cooled absorption chiller integrated with hot water production by a transient modeling," Renewable Energy, Elsevier, vol. 163(C), pages 1253-1264.
    5. Jayasekara, Saliya & Halgamuge, Saman K., 2014. "A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems," Applied Energy, Elsevier, vol. 127(C), pages 239-248.
    6. Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Xu, Aixiang & Wang, Yizhang & Song, Tingting & Xiong, Yawen & Liu, Zhiqiang & Yang, Sheng, 2023. "Emergy evaluation of a solar-powered cascade system for dehumidification, cooling and heating in hot summer and cold winter areas of China," Energy, Elsevier, vol. 278(PB).
    8. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    9. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    10. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    11. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    12. Brkić, Dejan & Tanasković, Toma I., 2008. "Systematic approach to natural gas usage for domestic heating in urban areas," Energy, Elsevier, vol. 33(12), pages 1738-1753.
    13. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Ding & Liu, Zijian & Bai, Yin & Cheng, Rui & Gong, Maoqiong, 2022. "Study on the multi-energy complementary absorption system applied for combined cooling and heating in cold winter and hot summer areas," Applied Energy, Elsevier, vol. 312(C).
    2. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
    4. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2023. "Potential for supply temperature reduction of existing district heating substations," Energy, Elsevier, vol. 285(C).
    5. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    7. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    8. Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
    9. Tomc, Urban & Nosan, Simon & Vidrih, Boris & Bogić, Simon & Navickaite, Kristina & Vozel, Katja & Bobič, Miha & Kitanovski, Andrej, 2024. "Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation," Applied Energy, Elsevier, vol. 361(C).
    10. Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    11. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
    12. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    13. Meibodi, Saleh S. & Rees, Simon & Loveridge, Fleur, 2024. "Modeling district heating pipelines using a hybrid dynamic thermal network approach," Energy, Elsevier, vol. 290(C).
    14. Zou, Lingeng & Liu, Ye & Yu, Jianlin, 2025. "Recent advances on performance enhancement of propane heat pump for heating applications," Energy, Elsevier, vol. 314(C).
    15. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Brunt, Nicholas & Duquette, Jean & O'Brien, William, 2023. "Techno-economic and environmental performance of two state-of-the-art solar-assisted district energy system topologies," Energy, Elsevier, vol. 276(C).
    17. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    18. Miah, J.H. & Griffiths, A. & McNeill, R. & Poonaji, I. & Martin, R. & Leiser, A. & Morse, S. & Yang, A. & Sadhukhan, J., 2015. "Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories," Applied Energy, Elsevier, vol. 160(C), pages 172-184.
    19. Chen, Yusheng & Guo, Tong & Kainz, Josef & Kriegel, Martin & Gaderer, Matthias, 2022. "Design of a biomass-heating network with an integrated heat pump: A simulation-based multi-objective optimization framework," Applied Energy, Elsevier, vol. 326(C).
    20. Martinopoulos, Georgios & Papakostas, Konstantinos T. & Papadopoulos, Agis M., 2018. "A comparative review of heating systems in EU countries, based on efficiency and fuel cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 687-699.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.