IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001569.html
   My bibliography  Save this article

A novel carbon emission estimation method based on electricity‑carbon nexus and non-intrusive load monitoring

Author

Listed:
  • Xia, Yingqi
  • Sun, Gengchen
  • Wang, Yanfeng
  • Yang, Qing
  • Wang, Qingrui
  • Ba, Shusong

Abstract

Accurate carbon accounting is foundational for power enterprises' participation in the carbon market. Current research on estimation of carbon dioxide emissions through electricity‑carbon index analysis primarily relies on an enterprise's total electricity consumption, which often leads to uncertainty and poor interpretability. In reality, carbon dioxide emissions within an enterprise are predominantly generated in specific key processes, indicating a strong correlation between the electricity consumption of key equipment and carbon dioxide emissions. In this context, to enhance both estimation accuracy and interpretability, a two-stage deep learning structure is proposed. This structure leverages non-intrusive load monitoring and employs deep learning algorithms to first disaggregate an enterprise's total electricity consumption into the consumption of key equipment and then use these data to estimate carbon dioxide emissions. Utilizing real-time data from a power plant in China, the proposed two-stage deep learning structure as well as three representative deep learning networks (Recurrent Neural Network, Long Short-Term Memory network, and Gated Recurrent Unit network) are applied to construct electricity‑carbon models for carbon dioxide emission estimation. The experimental results highlight that when employing the two-stage structure, models across three deep learning networks demonstrate a marked enhancement in estimation accuracy compared to traditional models. The two-stage structure reduces the mean squared error (MSE) for models across these three networks by 55.1%, 47.9%, and 46.9%, respectively, compared to their baseline values. This research aims to enhance the precision of carbon dioxide emission estimation and serves as a valuable reference for electricity‑carbon research in various sectors.

Suggested Citation

  • Xia, Yingqi & Sun, Gengchen & Wang, Yanfeng & Yang, Qing & Wang, Qingrui & Ba, Shusong, 2024. "A novel carbon emission estimation method based on electricity‑carbon nexus and non-intrusive load monitoring," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001569
    DOI: 10.1016/j.apenergy.2024.122773
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.