IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2528-d1655223.html
   My bibliography  Save this article

Identification of Abnormal Electricity Consumption Behavior of Low-Voltage Users in New Power Systems Based on a Combined Method

Author

Listed:
  • Jiaolong Gou

    (School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
    Xi’an High Way Research Institute Co., Ltd., Shaanxi Transportation Holding Group Co., Ltd., Xi’an 710065, China)

  • Xudong Niu

    (Department of New Quality Productive Forces, Shaanxi Transportation Holding Group Co., Ltd., Xi’an 710065, China)

  • Xi Chen

    (Information and Communication Company, State Grid Shaanxi Electric Power Company Limited, Xi’an 710004, China)

  • Shuxin Dong

    (School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Jing Xin

    (School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China)

Abstract

With the rapid growth in low-voltage electricity demand, abnormal electricity consumption behavior is becoming more and more frequent, which not only threatens the safe and stable operation of power systems, but also causes huge economic losses. In order to effectively meet this challenge, it is of great practical significance to carry out monitoring and analysis of abnormal power consumption of low-voltage users. In this paper, a new detection model of abnormal power consumption behavior of low-voltage power users in power system based on the hybrid model, namely the K-GBDT model, is proposed. The model combines the GBDT (Gradient Boosting Decision Tree) algorithm with the KNN (K-Nearest Neighbor) algorithm, effectively leveraging the strengths of both approaches. The K-GBDT model employs a two-stage classification strategy. In the first stage, the GBDT algorithm leverages its robust feature learning and nonlinear classification capabilities to perform coarse-grained classification, extracting global patterns and categorical information. In the second stage, based on the coarse classification results from GBDT, the data are partitioned into multiple subsets, and the KNN algorithm is applied to fine classification within each subset. This hybrid approach enables the K-GBDT model to effectively integrate GBDT’s global modeling strength with KNN’s local classification advantages. Comparative experiments and practical applications of the K-GBDT model against standalone GBDT and KNN algorithms were conducted. To further validate the proposed method, a comparative analysis was conducted against the Long Short-Term Memory Autoencoder (LSTM-AE) model. The experimental results demonstrate that the proposed K-GBDT model outperforms single-algorithm models in both classification accuracy and model generalization capability, enabling more accurate identification of abnormal electricity consumption behaviors among low-voltage users. This provides reliable technical support for intelligent management in power systems.

Suggested Citation

  • Jiaolong Gou & Xudong Niu & Xi Chen & Shuxin Dong & Jing Xin, 2025. "Identification of Abnormal Electricity Consumption Behavior of Low-Voltage Users in New Power Systems Based on a Combined Method," Energies, MDPI, vol. 18(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2528-:d:1655223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rongheng Lin & Shuo Chen & Zheyu He & Budan Wu & Hua Zou & Xin Zhao & Qiushuang Li, 2024. "Electricity Behavior Modeling and Anomaly Detection Services Based on a Deep Variational Autoencoder Network," Energies, MDPI, vol. 17(16), pages 1-20, August.
    2. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    3. Xia, Yingqi & Sun, Gengchen & Wang, Yanfeng & Yang, Qing & Wang, Qingrui & Ba, Shusong, 2024. "A novel carbon emission estimation method based on electricity‑carbon nexus and non-intrusive load monitoring," Applied Energy, Elsevier, vol. 360(C).
    4. Chao Tang & Yunchuan Qin & Yumeng Liu & Huilong Pi & Zhuo Tang, 2024. "An Efficient Method for Detecting Abnormal Electricity Behavior," Energies, MDPI, vol. 17(11), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisardo Prieto González & Anna Fensel & Juan Miguel Gómez Berbís & Angela Popa & Antonio de Amescua Seco, 2021. "A Survey on Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(21), pages 1-16, November.
    2. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    3. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    4. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    5. Akram Qashou & Sufian Yousef & Erika Sanchez-Velazquez, 2022. "Mining sensor data in a smart environment: a study of control algorithms and microgrid testbed for temporal forecasting and patterns of failure," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2371-2390, October.
    6. Theyazn H. H. Aldhyani & Hasan Alkahtani, 2023. "Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    7. Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
    8. Xuesong Tian & Yuping Zou & Xin Wang & Minglang Tseng & Hua Li & Huijuan Zhang, 2022. "Improving the Efficiency and Sustainability of Intelligent Electricity Inspection: IMFO-ELM Algorithm for Load Forecasting," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    9. Cheong Hee Park & Taegong Kim, 2020. "Energy Theft Detection in Advanced Metering Infrastructure Based on Anomaly Pattern Detection," Energies, MDPI, vol. 13(15), pages 1-10, July.
    10. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Losses: A Panel Data Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 281-286.
    11. Athanasiadis, C.L. & Papadopoulos, T.A. & Kryonidis, G.C. & Doukas, D.I., 2024. "A review of distribution network applications based on smart meter data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Hany Habbak & Mohamed Mahmoud & Mostafa M. Fouda & Maazen Alsabaan & Ahmed Mattar & Gouda I. Salama & Khaled Metwally, 2023. "Efficient One-Class False Data Detector Based on Deep SVDD for Smart Grids," Energies, MDPI, vol. 16(20), pages 1-28, October.
    13. Konstantinos V. Blazakis & Theodoros N. Kapetanakis & George S. Stavrakakis, 2020. "Effective Electricity Theft Detection in Power Distribution Grids Using an Adaptive Neuro Fuzzy Inference System," Energies, MDPI, vol. 13(12), pages 1-13, June.
    14. Tehseen Mazhar & Hafiz Muhammad Irfan & Sunawar Khan & Inayatul Haq & Inam Ullah & Muhammad Iqbal & Habib Hamam, 2023. "Analysis of Cyber Security Attacks and Its Solutions for the Smart grid Using Machine Learning and Blockchain Methods," Future Internet, MDPI, vol. 15(2), pages 1-37, February.
    15. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    16. Akram Qashou & Sufian Yousef & Firas Hazzaa & Kahtan Aziz, 2024. "Temporal forecasting by converting stochastic behaviour into a stable pattern in electric grid," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4426-4442, September.
    17. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
    18. Xiaofeng Feng & Hengyu Hui & Ziyang Liang & Wenchong Guo & Huakun Que & Haoyang Feng & Yu Yao & Chengjin Ye & Yi Ding, 2020. "A Novel Electricity Theft Detection Scheme Based on Text Convolutional Neural Networks," Energies, MDPI, vol. 13(21), pages 1-17, November.
    19. Francisco Jonatas Siqueira Coelho & Allan Rivalles Souza Feitosa & André Luís Michels Alcântara & Kaifeng Li & Ronaldo Ferreira Lima & Victor Rios Silva & Abel Guilhermino da Silva-Filho, 2023. "HyMOTree: Automatic Hyperparameters Tuning for Non-Technical Loss Detection Based on Multi-Objective and Tree-Based Algorithms," Energies, MDPI, vol. 16(13), pages 1-22, June.
    20. Mitra, Somalee & Chakraborty, Basab & Mitra, Pabitra, 2024. "Smart meter data analytics applications for secure, reliable and robust grid system: Survey and future directions," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2528-:d:1655223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.