IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4971-d1180087.html
   My bibliography  Save this article

HyMOTree: Automatic Hyperparameters Tuning for Non-Technical Loss Detection Based on Multi-Objective and Tree-Based Algorithms

Author

Listed:
  • Francisco Jonatas Siqueira Coelho

    (Informatics Center (CIn), Federal University of Pernambuco, Recife 50670-901, PE, Brazil)

  • Allan Rivalles Souza Feitosa

    (Informatics Center (CIn), Federal University of Pernambuco, Recife 50670-901, PE, Brazil)

  • André Luís Michels Alcântara

    (Eldorado Research Institute, Campinas 13083-898, SP, Brazil)

  • Kaifeng Li

    (Paulista Power and Light Company, Campinas 13070-740, SP, Brazil)

  • Ronaldo Ferreira Lima

    (Paulista Power and Light Company, Campinas 13070-740, SP, Brazil)

  • Victor Rios Silva

    (Paulista Power and Light Company, Campinas 13070-740, SP, Brazil)

  • Abel Guilhermino da Silva-Filho

    (Informatics Center (CIn), Federal University of Pernambuco, Recife 50670-901, PE, Brazil)

Abstract

The most common methods to detect non-technical losses involve Deep Learning-based classifiers and samples of consumption remotely collected several times a day through Smart Meters (SMs) and Advanced Metering Infrastructure (AMI). This approach requires a huge amount of data, and training is computationally expensive. However, most energy meters in emerging countries such as Brazil are technologically limited. These devices can measure only the accumulated energy consumption monthly. This work focuses on detecting energy theft in scenarios without AMI and SM. We propose a strategy called HyMOTree intended for the hyperparameter tuning of tree-based algorithms using different multiobjective optimization strategies. Our main contributions are associating different multiobjective optimization strategies to improve the classifier performance and analyzing the model’s performance given different probability cutoff operations. HyMOTree combines NSGA-II and GDE-3 with Decision Tree, Random Forest, and XGboost. A dataset provided by a Brazilian power distribution company CPFL ENERGIA™ was used, and the SMOTE technique was applied to balance the data. The results show that HyMOTree performed better than the random search method, and then, the combination between Random Forest and NSGA-II achieved 0.95 and 0.93 for Precision and F1-Score, respectively. Field studies showed that inspections guided by HyMOTree achieved an accuracy of 76%.

Suggested Citation

  • Francisco Jonatas Siqueira Coelho & Allan Rivalles Souza Feitosa & André Luís Michels Alcântara & Kaifeng Li & Ronaldo Ferreira Lima & Victor Rios Silva & Abel Guilhermino da Silva-Filho, 2023. "HyMOTree: Automatic Hyperparameters Tuning for Non-Technical Loss Detection Based on Multi-Objective and Tree-Based Algorithms," Energies, MDPI, vol. 16(13), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4971-:d:1180087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    2. Konstantinos V. Blazakis & Theodoros N. Kapetanakis & George S. Stavrakakis, 2020. "Effective Electricity Theft Detection in Power Distribution Grids Using an Adaptive Neuro Fuzzy Inference System," Energies, MDPI, vol. 13(12), pages 1-13, June.
    3. Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisardo Prieto González & Anna Fensel & Juan Miguel Gómez Berbís & Angela Popa & Antonio de Amescua Seco, 2021. "A Survey on Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(21), pages 1-16, November.
    2. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    3. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    4. Jean Bigeon & Sébastien Le Digabel & Ludovic Salomon, 2021. "DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 301-338, June.
    5. Akram Qashou & Sufian Yousef & Erika Sanchez-Velazquez, 2022. "Mining sensor data in a smart environment: a study of control algorithms and microgrid testbed for temporal forecasting and patterns of failure," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2371-2390, October.
    6. Gholamreza Shojatalab & Seyed Hadi Nasseri & Iraj Mahdavi, 2023. "New multi-objective optimization model for tourism systems with fuzzy data and new approach developed epsilon constraint method," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1360-1385, September.
    7. Theyazn H. H. Aldhyani & Hasan Alkahtani, 2023. "Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    8. Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
    9. Xuesong Tian & Yuping Zou & Xin Wang & Minglang Tseng & Hua Li & Huijuan Zhang, 2022. "Improving the Efficiency and Sustainability of Intelligent Electricity Inspection: IMFO-ELM Algorithm for Load Forecasting," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    10. Cheong Hee Park & Taegong Kim, 2020. "Energy Theft Detection in Advanced Metering Infrastructure Based on Anomaly Pattern Detection," Energies, MDPI, vol. 13(15), pages 1-10, July.
    11. Raka Jovanovic & Antonio P. Sanfilippo & Stefan Voß, 2022. "Fixed set search applied to the multi-objective minimum weighted vertex cover problem," Journal of Heuristics, Springer, vol. 28(4), pages 481-508, August.
    12. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Losses: A Panel Data Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 281-286.
    13. Charles Audet & Frédéric Messine & Jordan Ninin, 2022. "Numerical certification of Pareto optimality for biobjective nonlinear problems," Journal of Global Optimization, Springer, vol. 83(4), pages 891-908, August.
    14. Saidjon Shiralievich Tavarov & Alexander Sidorov & Zsolt Čonka & Murodbek Safaraliev & Pavel Matrenin & Mihail Senyuk & Svetlana Beryozkina & Inga Zicmane, 2023. "Control of Operational Modes of an Urban Distribution Grid under Conditions of Uncertainty," Energies, MDPI, vol. 16(8), pages 1-18, April.
    15. Hany Habbak & Mohamed Mahmoud & Mostafa M. Fouda & Maazen Alsabaan & Ahmed Mattar & Gouda I. Salama & Khaled Metwally, 2023. "Efficient One-Class False Data Detector Based on Deep SVDD for Smart Grids," Energies, MDPI, vol. 16(20), pages 1-28, October.
    16. Konstantinos V. Blazakis & Theodoros N. Kapetanakis & George S. Stavrakakis, 2020. "Effective Electricity Theft Detection in Power Distribution Grids Using an Adaptive Neuro Fuzzy Inference System," Energies, MDPI, vol. 13(12), pages 1-13, June.
    17. Jeewaka Perera & Shih-Hsi Liu & Marjan Mernik & Matej Črepinšek & Miha Ravber, 2023. "A Graph Pointer Network-Based Multi-Objective Deep Reinforcement Learning Algorithm for Solving the Traveling Salesman Problem," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    18. Tehseen Mazhar & Hafiz Muhammad Irfan & Sunawar Khan & Inayatul Haq & Inam Ullah & Muhammad Iqbal & Habib Hamam, 2023. "Analysis of Cyber Security Attacks and Its Solutions for the Smart grid Using Machine Learning and Blockchain Methods," Future Internet, MDPI, vol. 15(2), pages 1-37, February.
    19. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    20. Zandieh, Fatemeh & Ghannadpour, Seyed Farid, 2023. "A comprehensive risk assessment view on interval type-2 fuzzy controller for a time-dependent HazMat routing problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 685-707.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4971-:d:1180087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.