IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics0306261923013077.html
   My bibliography  Save this article

Agrivoltaic approach in improving soil resistivity in large scale solar farms for energy sustainability

Author

Listed:
  • Ya'acob, M.E.
  • Lu, Li
  • Zulkifli, S.A.
  • Roslan, N.
  • Ahmad, W.F.H. Wan

Abstract

Recently, approaches have been established to improve the grounding system performance, especially with the increasing numbers of large-scale solar (LSS) PV farms. Soil resistivity is one of the contributing factors to the inefficiency of power generation as it induces high impedance on electricity flow from the source to highly sensitive PV equipment and devices such as inverters. Some critical issues on nutrient leaching derived from ammonium sulphate fertilizer direct to ground soil are the focal point of this work with the fact that soil resistivity value is inversely proportional to increasing soil salt content. Therefore, a low grounding system could be obtained with a high Electrical Conductivity (EC) and high soil moisture content. In this work, a conceptual setup for an agrivoltaic condition with 500 units of herbal crops has been cultivated directly underneath 1 PV string in Puchong Solar Farm, Selangor, Malaysia. The amount of salt or nutrient under this condition was measured leaching approximately 40 mL per polybag as means of ground treatment to improve soil resistivity value, thus indirectly reducing the risk of electrical damage. The agrivoltaic approach has shown that it can improve the performance of a grounding system in an LSS PV farm with a significant reduction of 4.45 Ω earth resistance on average.

Suggested Citation

  • Ya'acob, M.E. & Lu, Li & Zulkifli, S.A. & Roslan, N. & Ahmad, W.F.H. Wan, 2023. "Agrivoltaic approach in improving soil resistivity in large scale solar farms for energy sustainability," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013077
    DOI: 10.1016/j.apenergy.2023.121943
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asadi, Mohammad Esmaeil & Clemente, Roberto S. & Gupta, Ashim Das & Loof, Rainer & Hansen, Gunner K., 2002. "Impacts of fertigation via sprinkler irrigation on nitrate leaching and corn yield in an acid-sulphate soil in Thailand," Agricultural Water Management, Elsevier, vol. 52(3), pages 197-213, January.
    2. Nur Hazirah Zaini & Mohd Zainal Abidin Ab. Kadir & Mohd Amran Mohd Radzi & Mahdi Izadi & Norhafiz Azis & Nor Izzati Ahmad & Mohd Solehin Mohd Nasir, 2017. "Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    3. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    4. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    5. Holzapfel, E. A. & Hepp, R. F. & Marino, M. A., 2004. "Effect of irrigation on fruit production in blueberry," Agricultural Water Management, Elsevier, vol. 67(3), pages 173-184, July.
    6. Edouard, Sylvain & Combes, Didier & Van Iseghem, Mike & Ng Wing Tin, Marion & Escobar-Gutiérrez, Abraham J., 2023. "Increasing land productivity with agriphotovoltaics: Application to an alfalfa field," Applied Energy, Elsevier, vol. 329(C).
    7. Abdul Wali Abdul Ali & Nurul Nadia Ahmad & Normiza Mohamad Nor & Nur Farahi Idris & Farhan Hanaffi, 2020. "Investigations on the Performance of Grounding Device with Spike Rods (GDSR) with the Effects of Soil Resistivity and Configurations," Energies, MDPI, vol. 13(14), pages 1-31, July.
    8. Bouwer, Herman, 1994. "Irrigation and global water outlook," Agricultural Water Management, Elsevier, vol. 25(3), pages 221-231, July.
    9. Ghiberto, P.J. & Libardi, P.L. & Trivelin, P.C.O., 2015. "Nutrient leaching in an Ultisol cultivated with sugarcane," Agricultural Water Management, Elsevier, vol. 148(C), pages 141-149.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Solas, Álvaro & Fernández-Ocaña, Ana M. & Almonacid, Florencia & Fernández, Eduardo F., 2023. "Potential of agrivoltaics systems into olive groves in the Mediterranean region," Applied Energy, Elsevier, vol. 352(C).
    2. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    3. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    4. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    5. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    6. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    7. Nur Alia Farina Mohamad Nasir & Mohd Zainal Abidin Ab Kadir & Miszaina Osman & Muhamad Safwan Abd Rahman & Ungku Anisa Ungku Amirulddin & Mohd Solehin Mohd Nasir & Nur Hazirah Zaini & Nik Hakimi Nik A, 2021. "Influence of Lightning Current Parameters and Earthing System Designs on Tower Footing Impedance of 500 kV Lines," Energies, MDPI, vol. 14(16), pages 1-19, August.
    8. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    9. Poonia, Surendra & Jat, N.K. & Santra, Priyabrata & Singh, A.K. & Jain, Dilip & Meena, H.M., 2022. "Techno-economic evaluation of different agri-voltaic designs for the hot arid ecosystem India," Renewable Energy, Elsevier, vol. 184(C), pages 149-163.
    10. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    11. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    13. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    14. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    15. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    16. Taylor, M. & Pettit, J. & Sekiyama, T. & Sokołowski, M.M., 2023. "Justice-driven agrivoltaics: Facilitating agrivoltaics embedded in energy justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Agir, Seven & Derin-Gure, Pinar & Senturk, Bilge, 2023. "Farmers’ perspectives on challenges and opportunities of agrivoltaics in Turkiye: An institutional perspective," Renewable Energy, Elsevier, vol. 212(C), pages 35-49.
    18. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
    19. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    20. Hanis Hamizah Hizamul-Din & Normiza Mohamad Nor, 2021. "Analysis of Zinc Oxide (ZnO) Surge Arrester Connected to Various Ground Electrodes," Energies, MDPI, vol. 14(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.