IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v342y2023ics0306261923005093.html
   My bibliography  Save this article

Hierarchical energy management system for multi-microgrid coordination with demand-side management

Author

Listed:
  • Bustos, Roberto
  • Marín, Luis G.
  • Navas-Fonseca, Alex
  • Reyes-Chamorro, Lorenzo
  • Sáez, Doris

Abstract

This paper presents an energy management system (EMS) with demand-side management (DSM) capabilities to optimally coordinate multiple microgrids connected to the same main grid. The proposed EMS comprises a two-level hierarchical control structure, with local controllers at microgrid level, and a supervisory control at the main-grid level. The main contribution of the proposed EMS is that it uses model-based predictive controllers (MPC) and DSM at both levels of the hierarchy. The main-grid level minimizes the imported power from the main grid and the shift from the expected demand for each microgrid. Moreover, it computes optimal aggregated power and demand side management references for each microgrid. The microgrid level manages the energy resources of each microgrid based on the reference signals sent by the main-grid level. Thus, the microgrid level tracks the main-grid level references, while minimizing both the power variation in the battery energy storage system and the variation in shifting factor to manage the demand. A simulation of a multi-microgrid system with three microgrids is implemented to validate the performance of the proposed two-level hierarchical MPC-based EMS with DSM. The proposed control scheme uses fuzzy Takagi–Sugeno models to predict the generation and consumption of the microgrids at both control levels. Furthermore, the proposed configuration is compared with two conventional EMS from the literature. The proposed architecture outperforms previously proposed controllers since, in the considered simulations, it (i) reduces to at least 1/4 the loss-of-power-supply probability for each individual microgrid, (ii) halfs the cycling of the individual storage devices in each microgrid, and (iii) reduces the overall system cost in ∼1.5%.

Suggested Citation

  • Bustos, Roberto & Marín, Luis G. & Navas-Fonseca, Alex & Reyes-Chamorro, Lorenzo & Sáez, Doris, 2023. "Hierarchical energy management system for multi-microgrid coordination with demand-side management," Applied Energy, Elsevier, vol. 342(C).
  • Handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005093
    DOI: 10.1016/j.apenergy.2023.121145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayop, Razman & Isa, Normazlina Mat & Tan, Chee Wei, 2018. "Components sizing of photovoltaic stand-alone system based on loss of power supply probability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2731-2743.
    2. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    3. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    4. Akeratana Noppakant & Boonyang Plangklang, 2022. "Improving Energy Management through Demand Response Programs for Low-Rise University Buildings," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    5. Warneryd, Martin & Håkansson, Maria & Karltorp, Kersti, 2020. "Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Yassuda Yamashita, Daniela & Vechiu, Ionel & Gaubert, Jean-Paul, 2021. "Two-level hierarchical model predictive control with an optimised cost function for energy management in building microgrids," Applied Energy, Elsevier, vol. 285(C).
    7. Parra, David & Norman, Stuart A. & Walker, Gavin S. & Gillott, Mark, 2017. "Optimum community energy storage for renewable energy and demand load management," Applied Energy, Elsevier, vol. 200(C), pages 358-369.
    8. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    9. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    10. Khan, Saad Salman & Ahmad, Sadiq & Naeem, Muhammad, 2023. "On-grid joint energy management and trading in uncertain environment," Applied Energy, Elsevier, vol. 330(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    2. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Walker, Awnalisa & Kwon, Soongeol, 2021. "Design of structured control policy for shared energy storage in residential community: A stochastic optimization approach," Applied Energy, Elsevier, vol. 298(C).
    4. Mbungu, Nsilulu T. & Bansal, Ramesh C. & Naidoo, Raj M. & Bettayeb, Maamar & Siti, Mukwanga W. & Bipath, Minnesh, 2020. "A dynamic energy management system using smart metering," Applied Energy, Elsevier, vol. 280(C).
    5. Dawid Jozwiak & Jayakrishnan Radhakrishna Pillai & Pavani Ponnaganti & Birgitte Bak-Jensen & Jan Jantzen, 2021. "Optimising Energy Flexibility of Boats in PV-BESS Based Marina Energy Systems," Energies, MDPI, vol. 14(12), pages 1-24, June.
    6. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    7. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    8. Pia Szichta & Ingela Tietze, 2020. "Sharing Economy in der Elektrizitätswirtschaft: Treiber und Hemmnisse [Title sharing economy in the electricity sector: drivers and barriers]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 28(3), pages 109-125, December.
    9. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    10. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    11. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    12. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    13. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform markets and energy services," Working Papers EPRG 1334, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    15. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    16. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    17. Liu, Yingqi, 2017. "Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain," Energy Policy, Elsevier, vol. 100(C), pages 271-282.
    18. Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
    19. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    20. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.