IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p935-d1592006.html
   My bibliography  Save this article

Energy Trading Strategies for Integrated Energy Systems Considering Uncertainty

Author

Listed:
  • Jin Gao

    (Key Laboratory of Energy Digitalization, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
    Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan)

  • Zhenguo Shao

    (Key Laboratory of Energy Digitalization, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China)

  • Feixiong Chen

    (Key Laboratory of Energy Digitalization, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China)

  • Mohammadreza Lak

    (Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan)

Abstract

To improve the stable operation and promote the energy sharing of the integrated energy system (IES), a comprehensive energy trading strategy considering uncertainty is proposed. Firstly, an IES model incorporating power-to-gas (P2G) and a carbon capture system (CCS) is established to reduce carbon emissions. Secondly, this model is integrated into a four-level robust optimization to address the fluctuation of renewable energy sources in IES operations. This not only considers probability distribution scenarios of renewable energy and the uncertainty of its output, but also effectively reduces the model’s conservatism by constructing a multi-interval uncertainty set. On this basis, a Nash–Harsanyi bargaining method is used to solve the issue of benefit allocation among multiple IESs. Finally, the energy trading model is solved using a distributed algorithm that ensures an equitable distribution of benefits while protecting the privacy of each IES. The simulation results validate the effectiveness of the proposed strategy.

Suggested Citation

  • Jin Gao & Zhenguo Shao & Feixiong Chen & Mohammadreza Lak, 2025. "Energy Trading Strategies for Integrated Energy Systems Considering Uncertainty," Energies, MDPI, vol. 18(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:935-:d:1592006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/935/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/935/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Weidong & Wang, Junnan & Yu, Guanyi & Chen, Jiajia & Hu, Yumeng, 2022. "Research on day-ahead transactions between multi-microgrid based on cooperative game model," Applied Energy, Elsevier, vol. 316(C).
    2. Wu, Xiao & Yang, Lihua & Zheng, Bingle, 2024. "Joint capacity configuration and demand response optimization of integrated energy system considering economic and dynamic control performance," Energy, Elsevier, vol. 301(C).
    3. Singh, Kamini & Gadh, Rajit & Singh, Anoop & Lal Dewangan, Chaman, 2022. "Design of an optimal P2P energy trading market model using bilevel stochastic optimization," Applied Energy, Elsevier, vol. 328(C).
    4. Aras Ghafoor & Jamal Aldahmashi & Judith Apsley & Siniša Djurović & Xiandong Ma & Mohamed Benbouzid, 2024. "Intelligent Integration of Renewable Energy Resources Review: Generation and Grid Level Opportunities and Challenges," Energies, MDPI, vol. 17(17), pages 1-29, September.
    5. Liu, Sha & Shen, Jiong & Zhang, Junli, 2024. "A novel configuration optimization approach for IES considering exergy-degradation and non-energy costs of equipment," Energy, Elsevier, vol. 312(C).
    6. Khan, Saad Salman & Ahmad, Sadiq & Naeem, Muhammad, 2023. "On-grid joint energy management and trading in uncertain environment," Applied Energy, Elsevier, vol. 330(PB).
    7. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    8. Siqin, Zhuoya & Niu, DongXiao & Wang, Xuejie & Zhen, Hao & Li, MingYu & Wang, Jingbo, 2022. "A two-stage distributionally robust optimization model for P2G-CCHP microgrid considering uncertainty and carbon emission," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).
    2. Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).
    3. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    4. Anjie Lu & Jianguo Zhou & Minglei Qin & Danchen Liu, 2024. "Considering Carbon–Hydrogen Coupled Integrated Energy Systems: A Pathway to Sustainable Energy Transition in China Under Uncertainty," Sustainability, MDPI, vol. 16(21), pages 1-32, October.
    5. Jani, Ali & Jadid, Shahram, 2023. "Two-stage energy scheduling framework for multi-microgrid system in market environment," Applied Energy, Elsevier, vol. 336(C).
    6. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    7. Wu, Yanjuan & Wang, Caiwei & Wang, Yunliang, 2024. "Cooperative game optimization scheduling of multi-region integrated energy system based on ADMM algorithm," Energy, Elsevier, vol. 302(C).
    8. Zhou, Dequn & Zhang, Yining & Wang, Qunwei & Ding, Hao, 2024. "How do uncertain renewable energy induced risks evolve in a two-stage deregulated wholesale power market," Applied Energy, Elsevier, vol. 353(PB).
    9. Ji, Jie & Wen, Wenchao & Xie, Yingqi & Xia, Aoyun & Wang, Wenjie & Xie, Jinbo & Yin, Qingyuan & Ma, Mengyu & Huang, Hui & Huang, Xiaolong & Zhang, Chu & Wang, Yaodong, 2024. "Optimization and uncertainty analysis of Co-combustion ratios in a semi-isolated green energy combined cooling, heating, and power system (SIGE-CCHP)," Energy, Elsevier, vol. 302(C).
    10. Mohseni, Shayan & Pishvaee, Mir Saman, 2023. "Energy trading and scheduling in networked microgrids using fuzzy bargaining game theory and distributionally robust optimization," Applied Energy, Elsevier, vol. 350(C).
    11. Cao, Jinye & Yang, Dechang & Dehghanian, Payman, 2024. "Cooperative operation for multiple virtual power plants considering energy-carbon trading: A Nash bargaining model," Energy, Elsevier, vol. 307(C).
    12. Park, Jung-Sung & Kim, Seung Wan & Lee, Ji Woo, 2024. "P2P credit auction vs. net metering: Benefit analysis for prosumers under incremental block rate electricity tariff," Applied Energy, Elsevier, vol. 364(C).
    13. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    14. Soonwoo Lee & Hui-Myoung Oh & Jung Min Pak, 2024. "Event-Triggered Transmission of Sensor Measurements Using Twin Hybrid Filters for Renewable Energy Resource Management Systems," Energies, MDPI, vol. 17(22), pages 1-18, November.
    15. Lv, Shuaishuai & Wang, Hui & Meng, Xiangping & Yang, Chengdong & Wang, Mingyue, 2022. "Optimal capacity configuration model of power-to-gas equipment in wind-solar sustainable energy systems based on a novel spatiotemporal clustering algorithm: A pathway towards sustainable development," Renewable Energy, Elsevier, vol. 201(P1), pages 240-255.
    16. Chen, Yuanyi & Zheng, Yanchong & Hu, Simon & Xie, Shiwei & Yang, Qiang, 2024. "Risk-averse energy dispatch for hybrid energy refueling stations considering Boundedly rational mixed user equilibrium and operational uncertainties," Applied Energy, Elsevier, vol. 376(PA).
    17. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    18. Lang Zhao & Zhidong Wang & Haiqiong Yi & Yizheng Li & Xueying Wang & Yunpeng Xiao & Zhiyun Hu & Honglian Zhou & Xinhua Zhang, 2024. "Source-Storage-Load Flexible Scheduling Strategy Considering Characteristics Complementary of Hydrogen Storage System and Flexible Carbon Capture System," Energies, MDPI, vol. 17(16), pages 1-28, August.
    19. Ma, Teng & Li, Ming-Jia & Fan, Chang-Hao & Dong, Hong-Sheng, 2024. "A novel real-time dynamic performance evaluation and capacity configuration optimization method of generation-storage-load for integrated energy system," Applied Energy, Elsevier, vol. 374(C).
    20. Ni, Hang & Qu, Xinhe & Zhao, Gang & Zhang, Ping & Peng, Wei, 2024. "Research on two novel hydrogen-electricity-heat polygeneration systems using very-high-temperature gas-cooled reactor and hybrid-sulfur cycle," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:935-:d:1592006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.