IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033784.html
   My bibliography  Save this article

A novel configuration optimization approach for IES considering exergy-degradation and non-energy costs of equipment

Author

Listed:
  • Liu, Sha
  • Shen, Jiong
  • Zhang, Junli

Abstract

Improving the exergy utilization and economic performance is the core goal for the configuration optimization of the integrated energy system (IES). Achieving such a goal requires accurate evaluation of the exergy efficiency and economy. However, IES is a multisource heterogeneous and strongly coupled system. The development of reasonable exergy efficiency-economy characteristic evaluation indicators is a complex issue that limits its application in IES configuration. This article proposes a novel IES configuration optimization approach based on the concept of the equipment exergyeconomic cost coefficient. The exergyeconomic cost coefficient consists of the exergy-degradation and non-energy costs, which can quantitatively characterize the exergy efficiency and economy of the IES under a unified benchmark. A mechanism model for the equipment exergyeconomic cost coefficient, output of various equipment and total exergyeconomic cost is established. Furthermore, exergy flow attribute classification method is proposed to obtain the equipment exergyeconomic cost coefficient in the IES. The proposed method is verified in a real-world study case located in Yancheng, China. Compared to the conventional configuration method, the capacity of the renewable energy and combined heat and power generation (CHP) are enhanced, while the capacity of purchased electricity and electric boiler (EB) are reduced. It can obtain the minimum total exergyeconomic cost (TEC) for the IES. This study offers a new direction for the optimal configuration of IES.

Suggested Citation

  • Liu, Sha & Shen, Jiong & Zhang, Junli, 2024. "A novel configuration optimization approach for IES considering exergy-degradation and non-energy costs of equipment," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033784
    DOI: 10.1016/j.energy.2024.133600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Jie & Li, Mofan & Zhu, Min & Li, Ran & Tang, Linghong & Bai, Junhua, 2023. "Energy, exergy and economic analysis of different integrated systems for power generation using LNG cold energy and geothermal energy," Renewable Energy, Elsevier, vol. 202(C), pages 1054-1070.
    2. Li, Rui & Wang, Wei & Wu, Xuezhi & Tang, Fen & Chen, Zhe, 2019. "Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis," Energy, Elsevier, vol. 168(C), pages 30-42.
    3. Chae, Song Hwa & Kim, Sang Hun & Yoon, Sung-Geun & Park, Sunwon, 2010. "Optimization of a waste heat utilization network in an eco-industrial park," Applied Energy, Elsevier, vol. 87(6), pages 1978-1988, June.
    4. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    5. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    6. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    7. Yu Huang & Shuqin Li & Peng Ding & Yan Zhang & Kai Yang & Weiting Zhang, 2019. "Optimal Operation for Economic and Exergetic Objectives of a Multiple Energy Carrier System Considering Demand Response Program," Energies, MDPI, vol. 12(20), pages 1-21, October.
    8. Hu, Xiao & Zhang, Heng & Chen, Dongwen & Li, Yong & Wang, Li & Zhang, Feng & Cheng, Haozhong, 2020. "Multi-objective planning for integrated energy systems considering both exergy efficiency and economy," Energy, Elsevier, vol. 197(C).
    9. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
    10. Hu, Mengqi & Cho, Heejin, 2014. "A probability constrained multi-objective optimization model for CCHP system operation decision support," Applied Energy, Elsevier, vol. 116(C), pages 230-242.
    11. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    12. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    13. Ren, Jie & Qian, Zuoqin & Fei, Chunguang & Lu, Ding & Zou, Yincai & Xu, Chen & Liu, Lu, 2023. "Thermodynamic, exergoeconomic, and exergoenvironmental analysis of a combined cooling and power system for natural gas-biomass dual fuel gas turbine waste heat recovery," Energy, Elsevier, vol. 269(C).
    14. Riepin, Iegor & Möbius, Thomas & Müsgens, Felix, 2021. "Modelling uncertainty in coupled electricity and gas systems—Is it worth the effort?," Applied Energy, Elsevier, vol. 285(C).
    15. Wang, Yongli & Huang, Feifei & Tao, Siyi & Ma, Yang & Ma, Yuze & Liu, Lin & Dong, Fugui, 2022. "Multi-objective planning of regional integrated energy system aiming at exergy efficiency and economy," Applied Energy, Elsevier, vol. 306(PB).
    16. Wei, Dajun & Chen, Alian & Sun, Bo & Zhang, Chenghui, 2016. "Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system," Energy, Elsevier, vol. 98(C), pages 296-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Gao & Zhenguo Shao & Feixiong Chen & Mohammadreza Lak, 2025. "Energy Trading Strategies for Integrated Energy Systems Considering Uncertainty," Energies, MDPI, vol. 18(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xiao & Zhang, Heng & Chen, Dongwen & Li, Yong & Wang, Li & Zhang, Feng & Cheng, Haozhong, 2020. "Multi-objective planning for integrated energy systems considering both exergy efficiency and economy," Energy, Elsevier, vol. 197(C).
    2. Li, Jiaxi & Wang, Dan & Jia, Hongjie & Lei, Yang & Zhou, Tianshuo & Guo, Ying, 2022. "Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system," Applied Energy, Elsevier, vol. 324(C).
    3. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    4. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    5. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    6. Yu, Nan & Kang, Jin-Su & Chang, Chung-Chuan & Lee, Tai-Yong & Lee, Dong-Yup, 2016. "Robust economic optimization and environmental policy analysis for microgrid planning: An application to Taichung Industrial Park, Taiwan," Energy, Elsevier, vol. 113(C), pages 671-682.
    7. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    8. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    9. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    10. Zhao, Huirong & Yao, Yuqi & Peng, Daogang & Zhao, Peixi, 2024. "A preference adjustable capacity configuration optimization method for hydrogen-containing integrated energy system considering dynamic energy efficiency improvement and load fast tracking," Renewable Energy, Elsevier, vol. 235(C).
    11. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    12. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    13. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    14. Capone, Martina & Guelpa, Elisa & Mancò, Giulia & Verda, Vittorio, 2021. "Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems," Energy, Elsevier, vol. 237(C).
    15. Mena, Rodrigo & Hennebel, Martin & Li, Yan-Fu & Zio, Enrico, 2014. "Self-adaptable hierarchical clustering analysis and differential evolution for optimal integration of renewable distributed generation," Applied Energy, Elsevier, vol. 133(C), pages 388-402.
    16. Zou, Dexuan & Gong, Dunwei & Ouyang, Haibin, 2023. "A non-dominated sorting genetic approach using elite crossover for the combined cooling, heating, and power system with three energy storages," Applied Energy, Elsevier, vol. 329(C).
    17. Chen, Xianqing & Dong, Wei & Yang, Lingfang & Yang, Qiang, 2023. "Scenario-based robust capacity planning of regional integrated energy systems considering carbon emissions," Renewable Energy, Elsevier, vol. 207(C), pages 359-375.
    18. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Pruitt, Kristopher A. & Braun, Robert J. & Newman, Alexandra M., 2013. "Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of distributed generation systems," Applied Energy, Elsevier, vol. 102(C), pages 386-398.
    20. Çiçek, Alper & Şengör, İbrahim & Erenoğlu, Ayşe Kübra & Erdinç, Ozan, 2020. "Decision making mechanism for a smart neighborhood fed by multi-energy systems considering demand response," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.