IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124020445.html
   My bibliography  Save this article

Research on real-time coordinated optimization scheduling control strategy with supply-side flexibility in multi-microgrid energy systems

Author

Listed:
  • Wu, Nan
  • Wang, Zhipeng
  • Li, Xinyan
  • Lei, Lin
  • Qiao, Yupeng
  • Linghu, Jinqing
  • Huang, Jie

Abstract

With the increasing interconnection of regional microgrid (MG), the full utilization of energy and stable operation of the system have become the current research hotspots. Meanwhile, the optimal coordination of energy in multiple MGs under stable operation has become a highly challenging problem. Taking into account the diversity and complementarity of energy sources within the system, this paper proposes a multi-microgrid (MMG) energy complementation model by fully considering the flexibility characteristics of the supply side, and puts forward a real-time optimization dispatch control strategy based on the model. This strategy takes a completely new approach, based on the characteristics of different types of energy, dividing the dispatch process into two parts to coordinate the energy interactions among multiple MGs, and then determining the optimal dispatching scheme for each part to ensure the autonomous stable operation of individual MG while maximizing the self-sufficiency of the MMG system. At the same time, a case study was conducted on the IEEE 33 node model. Simulation results show that the proposed control strategy achieves the full integration of renewable energy in the MMG system, reduces system operating costs, and achieves the optimal coordination of energy in MMG systems.

Suggested Citation

  • Wu, Nan & Wang, Zhipeng & Li, Xinyan & Lei, Lin & Qiao, Yupeng & Linghu, Jinqing & Huang, Jie, 2025. "Research on real-time coordinated optimization scheduling control strategy with supply-side flexibility in multi-microgrid energy systems," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020445
    DOI: 10.1016/j.renene.2024.121976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124020445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    2. Pan, Chongchao & Jin, Tai & Li, Na & Wang, Guanxiong & Hou, Xiaowang & Gu, Yueqing, 2023. "Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses," Energy, Elsevier, vol. 270(C).
    3. Wang, Kang & Wang, Chengfu & Yao, Wenliang & Zhang, Zhenwei & Liu, Chao & Dong, Xiaoming & Yang, Ming & Wang, Yong, 2024. "Embedding P2P transaction into demand response exchange: A cooperative demand response management framework for IES," Applied Energy, Elsevier, vol. 367(C).
    4. Ren, Lingyu & Qin, Yanyuan & Li, Yan & Zhang, Peng & Wang, Bing & Luh, Peter B. & Han, Song & Orekan, Taofeek & Gong, Tao, 2018. "Enabling resilient distributed power sharing in networked microgrids through software defined networking," Applied Energy, Elsevier, vol. 210(C), pages 1251-1265.
    5. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    6. Fang, Xinli & Ma, Shihao & Yang, Qiang & Zhang, Jintao, 2016. "Cooperative energy dispatch for multiple autonomous microgrids with distributed renewable sources and storages," Energy, Elsevier, vol. 99(C), pages 48-57.
    7. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    8. Bustos, Roberto & Marín, Luis G. & Navas-Fonseca, Alex & Reyes-Chamorro, Lorenzo & Sáez, Doris, 2023. "Hierarchical energy management system for multi-microgrid coordination with demand-side management," Applied Energy, Elsevier, vol. 342(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongkai Zhang & Outing Zhang & Peng Li & Xianyu Yue & Zhongfu Tan, 2025. "Two-Stage Robust Optimization Model for Flexible Response of Micro-Energy Grid Clusters to Host Utility Grid," Energies, MDPI, vol. 18(12), pages 1-22, June.
    2. Lei Zhang & Yuxing Yuan & Su Yan & Hang Cao & Tao Du, 2025. "Advances in Modeling and Optimization of Intelligent Power Systems Integrating Renewable Energy in the Industrial Sector: A Multi-Perspective Review," Energies, MDPI, vol. 18(10), pages 1-50, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    2. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    3. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    4. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    5. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    6. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Pan Wu & Wentao Huang & Nengling Tai & Zhoujun Ma & Xiaodong Zheng & Yong Zhang, 2019. "A Multi-Layer Coordinated Control Scheme to Improve the Operation Friendliness of Grid-Connected Multiple Microgrids," Energies, MDPI, vol. 12(2), pages 1-21, January.
    8. Yang, Yanhong & Pei, Wei & Huo, Qunhai & Sun, Jianjun & Xu, Feng, 2018. "Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection," Applied Energy, Elsevier, vol. 228(C), pages 2361-2374.
    9. Naderi, Mobin & Khayat, Yousef & Shafiee, Qobad & Blaabjerg, Frede & Bevrani, Hassan, 2023. "Dynamic modeling, stability analysis and control of interconnected microgrids: A review," Applied Energy, Elsevier, vol. 334(C).
    10. Li, Yan & Zhang, Peng & Yue, Meng, 2018. "Networked microgrid stability through distributed formal analysis," Applied Energy, Elsevier, vol. 228(C), pages 279-288.
    11. Du, Yan & Wang, Zhiwei & Liu, Guangyi & Chen, Xi & Yuan, Haoyu & Wei, Yanli & Li, Fangxing, 2018. "A cooperative game approach for coordinating multi-microgrid operation within distribution systems," Applied Energy, Elsevier, vol. 222(C), pages 383-395.
    12. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    13. Yin, Boyi & Zhu, Wenjiang & Tang, Cheng & Wang, Can & Xu, Xinhai, 2025. "Hierarchical optimal scheduling of IES considering SOFC degradation, internal and external uncertainties," Applied Energy, Elsevier, vol. 381(C).
    14. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    15. Fouad Boutros & Moustapha Doumiati & Jean-Christophe Olivier & Imad Mougharbel & Hadi Kanaan, 2024. "Optimal Placement of Multiple Sources in a Mesh-Type DC Microgrid Using Dijkstra’s Algorithm," Energies, MDPI, vol. 17(14), pages 1-18, July.
    16. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    17. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    18. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    19. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    20. Gao, Yang & Ai, Qian & He, Xing & Fan, Songli, 2023. "Coordination for regional integrated energy system through target cascade optimization," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.