IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics030626192201385x.html
   My bibliography  Save this article

Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach

Author

Listed:
  • Amirgholy, Mahyar
  • Gao, H. Oliver

Abstract

The integration of artificial intelligence and wireless communication technologies in communicant autonomous vehicles (CAVs) enables coordinating the movement of CAV platoons at signal-free intersections. The capacity of signal-free intersections can be significantly improved by adjusting traffic variables at a macroscopic scale; however, the resulting improvement in the capacity does not necessarily have a positive impact on the energy consumption of CAVs at the network level. In this research, we develop an analytical model to enhance energy efficiency by optimizing macroscopic traffic variables in signal-free networks. To this end, we adopt a macroscopic modeling approach to estimate the operational capacity by accounting for the stochasticity resulting from the error in synchronizing the arrival and departure of consecutive platoons in crossing directions at intersections. We also develop a macrolevel analytical model to estimate expected energy loss during the acceleration/deceleration maneuver required for resynchronization at intersections as a function of synchronization success probability. We then maximize energy efficiency by minimizing expected energy loss and maximizing expected capacity in a biobjective optimization framework. We solve the energy efficiency problem using an analytical approach to derive a closed-form solution for the optimal traffic speed and the length of the marginal gap between the passage of consecutive platoons in crossing directions through intersections for a (general) normal distribution of the operational error. Having the closed-form solution of the energy efficiency problem, we balance the trade-off between energy loss and operational capacity at a large scale by extending the analytical model to the network level using the Macroscopic Fundamental Diagram (MFD) concept. The results of our two-ring simulation model indicate the accuracy of the proposed analytical model in estimating the macroscopic relationship between the expected energy loss at intersections and the vehicular density in signal-free networks. Our numerical results also show that optimizing the traffic speed and marginal gap length can improve energy efficiency by 31% at the cost of a 16% decrease in maximum capacity.

Suggested Citation

  • Amirgholy, Mahyar & Gao, H. Oliver, 2023. "Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s030626192201385x
    DOI: 10.1016/j.apenergy.2022.120128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201385X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    2. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    3. Zhang, Cheng & Yang, Fan & Ke, Xinyou & Liu, Zhifeng & Yuan, Chris, 2019. "Predictive modeling of energy consumption and greenhouse gas emissions from autonomous electric vehicle operations," Applied Energy, Elsevier, vol. 254(C).
    4. Carolina Osorio & Kanchana Nanduri, 2015. "Energy-Efficient Urban Traffic Management: A Microscopic Simulation-Based Approach," Transportation Science, INFORMS, vol. 49(3), pages 637-651, August.
    5. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2011. "Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 278-288, January.
    6. Xing, Yang & Lv, Chen & Cao, Dongpu & Lu, Chao, 2020. "Energy oriented driving behavior analysis and personalized prediction of vehicle states with joint time series modeling," Applied Energy, Elsevier, vol. 261(C).
    7. Kim, Youngki & Figueroa-Santos, Miriam & Prakash, Niket & Baek, Stanley & Siegel, Jason B. & Rizzo, Denise M., 2020. "Co-optimization of speed trajectory and power management for a fuel-cell/battery electric vehicle," Applied Energy, Elsevier, vol. 260(C).
    8. Amirgholy, Mahyar & Nourinejad, Mehdi & Gao, H. Oliver, 2020. "Optimal traffic control at smart intersections: Automated network fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 2-18.
    9. Graba, M. & Mamala, J. & Bieniek, A. & Sroka, Z., 2021. "Impact of the acceleration intensity of a passenger car in a road test on energy consumption," Energy, Elsevier, vol. 226(C).
    10. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    11. Wang, Hua & Meng, Qiang & Chen, Shukai & Zhang, Xiaoning, 2021. "Competitive and cooperative behaviour analysis of connected and autonomous vehicles across unsignalised intersections: A game-theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 322-346.
    12. Yu, Chunhui & Feng, Yiheng & Liu, Henry X. & Ma, Wanjing & Yang, Xiaoguang, 2018. "Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 89-112.
    13. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    14. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    15. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    16. Knoop, Victor L. & van Lint, Hans & Hoogendoorn, Serge P., 2015. "Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 236-250.
    17. Daganzo, Carlos F & Geroliminis, Nikolas, 2008. "An analytical approximation for the macropscopic fundamental diagram of urban traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4cb8h3jm, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingjun Qiao & Tianchuang Meng & Hongmao Qin & Ziniu Hu & Zhihua Zhong, 2023. "Vehicle-to-Infrastructure-Based Traffic Signal Optimization for Isolated Intersection," Sustainability, MDPI, vol. 15(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, R.X. & Chen, C. & Huang, Y.P. & Sumalee, A. & Lam, W.H.K. & Xu, D.B., 2018. "Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 687-707.
    2. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Zhang, Mengping, 2015. "Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 189-217.
    3. Amirgholy, Mahyar & Nourinejad, Mehdi & Gao, H. Oliver, 2020. "Optimal traffic control at smart intersections: Automated network fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 2-18.
    4. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    5. Laval, Jorge A. & Castrillón, Felipe, 2015. "Stochastic approximations for the macroscopic fundamental diagram of urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 904-916.
    6. Wu, Chao-Yun & Li, Ming & Jiang, Rui & Hao, Qing-Yi & Hu, Mao-Bin, 2018. "Perimeter control for urban traffic system based on macroscopic fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 231-242.
    7. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    8. Leclercq, Ludovic & Geroliminis, Nikolas, 2013. "Estimating MFDs in simple networks with route choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 468-484.
    9. Leclercq, Ludovic & Sénécat, Alméria & Mariotte, Guilhem, 2017. "Dynamic macroscopic simulation of on-street parking search: A trip-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 268-282.
    10. Mohammad Halakoo & Hao Yang & Harith Abdulsattar, 2023. "Heterogeneity Aware Emission Macroscopic Fundamental Diagram (e-MFD)," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    11. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    12. Zheng, Nan & Geroliminis, Nikolas, 2013. "On the distribution of urban road space for multimodal congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 326-341.
    13. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    14. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.
    15. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    16. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    17. Geroliminis, Nikolas & Sun, Jie, 2011. "Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 966-979, November.
    18. Gayah, Vikash V. & Daganzo, Carlos F., 2011. "Clockwise hysteresis loops in the Macroscopic Fundamental Diagram: An effect of network instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 643-655, May.
    19. Haddad, Jack & Ramezani, Mohsen & Geroliminis, Nikolas, 2013. "Cooperative traffic control of a mixed network with two urban regions and a freeway," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 17-36.
    20. Ambühl, Lukas & Loder, Allister & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2020. "A functional form with a physical meaning for the macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 119-132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s030626192201385x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.