IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1653-d1036018.html
   My bibliography  Save this article

Heterogeneity Aware Emission Macroscopic Fundamental Diagram (e-MFD)

Author

Listed:
  • Mohammad Halakoo

    (Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada)

  • Hao Yang

    (Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada)

  • Harith Abdulsattar

    (McMaster Institute for Transportation and Logistics, Hamilton, ON L8S 4L8, Canada)

Abstract

Transportation sector is one of the major producers of greenhouse gases which are responsible for climate change. Finding an appropriate emission estimation tool for large-scale networks is essential for developing efficient emission mitigation strategies. This paper presents an advanced version of the emission macroscopic fundamental diagram (e-MFD) which improves the stability and accuracy of the previous model. A bi-modal function is applied to separate free-flow and congested branches of the e-MFD. The accuracy of the proposed e-MFD is evaluated with both a synthetic grid network and a real-world city-level network. The study also assesses the model’s stability under directional traffic demands and road incidents. A comparison with the original e-MFD also verifies the superiority of the proposed model with higher accuracy. Standard deviation of density used in the proposed model to boost the performance. It is worth mentioning the standard deviation can be recorded with the existing hardware, such as loop detectors, and does not impose a considerable computational complexity. The proposed model can be employed for emission measurement in large-scale networks and hierarchical traffic control systems for more homogeneous congestion distribution and emission control.

Suggested Citation

  • Mohammad Halakoo & Hao Yang & Harith Abdulsattar, 2023. "Heterogeneity Aware Emission Macroscopic Fundamental Diagram (e-MFD)," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1653-:d:1036018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    2. Yildirimoglu, Mehmet & Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Hierarchical control of heterogeneous large-scale urban road networks via path assignment and regional route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 106-123.
    3. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    4. Gayah, Vikash V. & Daganzo, Carlos F., 2011. "Clockwise hysteresis loops in the Macroscopic Fundamental Diagram: An effect of network instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 643-655, May.
    5. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2016. "Clustering of heterogeneous networks with directional flows based on “Snake” similarities," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 250-269.
    6. Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    8. Knoop, Victor L. & van Lint, Hans & Hoogendoorn, Serge P., 2015. "Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 236-250.
    9. Daganzo, Carlos F & Geroliminis, Nikolas, 2008. "An analytical approximation for the macropscopic fundamental diagram of urban traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4cb8h3jm, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Gemma & Orlando Giannattasio & Livia Mannini, 2023. "Motorway Traffic Emissions Estimation through Stochastic Fundamental Diagram," Sustainability, MDPI, vol. 15(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    2. Ambühl, Lukas & Loder, Allister & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2020. "A functional form with a physical meaning for the macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 119-132.
    3. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    4. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    5. Laval, Jorge A. & Castrillón, Felipe, 2015. "Stochastic approximations for the macroscopic fundamental diagram of urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 904-916.
    6. Zhong, R.X. & Chen, C. & Huang, Y.P. & Sumalee, A. & Lam, W.H.K. & Xu, D.B., 2018. "Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 687-707.
    7. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Zhang, Mengping, 2015. "Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 189-217.
    8. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    9. Wu, Chao-Yun & Li, Ming & Jiang, Rui & Hao, Qing-Yi & Hu, Mao-Bin, 2018. "Perimeter control for urban traffic system based on macroscopic fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 231-242.
    10. Loder, Allister & Dakic, Igor & Bressan, Lea & Ambühl, Lukas & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2019. "Capturing network properties with a functional form for the multi-modal macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 1-19.
    11. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    12. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    13. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Xiong, Tao & Zhang, Mengping & Choi, Keechoo, 2013. "Revisiting Jiang’s dynamic continuum model for urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 96-119.
    14. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    15. Li, Ye & Mohajerpoor, Reza & Ramezani, Mohsen, 2021. "Perimeter control with real-time location-varying cordon," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 101-120.
    16. Amirgholy, Mahyar & Gao, H. Oliver, 2023. "Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach," Applied Energy, Elsevier, vol. 329(C).
    17. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    18. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    19. Kumarage, Sakitha & Yildirimoglu, Mehmet & Zheng, Zuduo, 2023. "A hybrid modelling framework for the estimation of dynamic origin–destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    20. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1653-:d:1036018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.