IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922012363.html
   My bibliography  Save this article

Enhancement of the performance and emissions reduction of a hydroxygen-blended gasoline engine using different catalysts

Author

Listed:
  • Hassan, Haroun
  • Aissa, Walid A.
  • Eissa, Mohamed S.
  • Abdel-Mohsen, Hesham S.

Abstract

Recently, Egypt has been suffering from rapid and considerable growth in fossil fuel demand, especially in the transportation sector. Hydroxy (HHO) gas which is generated from water electrolysis process has a significant effect on increasing the engine performance, and reducing fuel consumption, and emissions. In the present work, a dry fuel cell is constructed and tested under different types of electrolysis, different concentrations of electrolytes, and different numbers of neutral plates (NP) to obtain the most economic, safe, and best cell quality suitable for different engine operating conditions. A 183-cc single cylinder SI engine connected with a hydraulic pump, in one unit, was used for the study. HHO gas was supplied to the intake manifold of the engine under different conditions. The results showed that engine performance is most improved by using HHO gas generated by KOH electrolyte, 4 NP, at 1500 rpm. Under the optimum conditions, the maximum increase in the engine/pump efficiency was 47.24 %, maximum decrease in specific fuel consumption (SFC) was 32.1 %, and maximum reduction in CO and HC emissions were 91.7 %, and 34.84 %, respectively.

Suggested Citation

  • Hassan, Haroun & Aissa, Walid A. & Eissa, Mohamed S. & Abdel-Mohsen, Hesham S., 2022. "Enhancement of the performance and emissions reduction of a hydroxygen-blended gasoline engine using different catalysts," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012363
    DOI: 10.1016/j.apenergy.2022.119979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Işik, Mehmet Zerrakki & Aydin, Hüseyin, 2019. "Investigation on the effects of gasoline reactivity controlled compression ignition application in a diesel generator in high loads using safflower biodiesel blends," Renewable Energy, Elsevier, vol. 133(C), pages 177-189.
    2. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    3. Deng, Yuanwang & Feng, Changling & E, Jiaqiang & Wei, Kexiang & Zhang, Bin & Zhang, Zhiqing & Han, Dandan & Zhao, Xiaohuan & Xu, Wenwen, 2019. "Performance enhancement of the gasoline engine hydrocarbon catchers for reducing hydrocarbon emission during the cold-start period," Energy, Elsevier, vol. 183(C), pages 869-879.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    2. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    3. Aydın, Hüseyin, 2021. "An innovative research on variable compression ratio in RCCI strategy on a power generator diesel engine using CNG-safflower biodiesel," Energy, Elsevier, vol. 231(C).
    4. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    5. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    6. Mourad, M. & Mahmoud, K., 2019. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends," Renewable Energy, Elsevier, vol. 143(C), pages 762-771.
    7. Feng, Changling & Deng, Yuanwang & E, Jiaqiang & Han, Dandan & Tan, Yan, 2023. "Effect analysis on hydrocarbon adsorption enhancement of ZSM-5 zeolite modified by transition metal ions in cold start of gasoline engine," Energy, Elsevier, vol. 267(C).
    8. Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
    9. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
    10. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Badawy, Tawfik & Mansour, Mohy S. & Daabo, Ahmed M. & Abdel Aziz, Mostafa M. & Othman, Abdelrahman A. & Barsoum, Fady & Basouni, Mohamed & Hussien, Mohamed & Ghareeb, Mourad & Hamza, Mahmoud & Wang, C, 2021. "Selection of second-generation crop for biodiesel extraction and testing its impact with nano additives on diesel engine performance and emissions," Energy, Elsevier, vol. 237(C).
    12. Gao, Jianbing & Tian, Guohong & Ma, Chaochen & Xing, Shikai & Jenner, Phil, 2021. "Performance explorations of a naturally aspirated opposed rotary piston engine fuelled with hydrogen under part load and stoichiometric conditions using a numerical simulation approach," Energy, Elsevier, vol. 222(C).
    13. Tamilvanan, A. & Mohanraj, T. & Ashok, B. & Santhoshkumar, A., 2023. "Enhancement of energy conversion and emission reduction of Calophyllum inophyllum biodiesel in diesel engine using reactivity controlled compression ignition strategy and TOPSIS optimization," Energy, Elsevier, vol. 264(C).
    14. Wu, Horng-Wen & Wu, Zhan-Yi, 2012. "Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen," Energy, Elsevier, vol. 47(1), pages 411-420.
    15. Sergio Nogales-Delgado & José María Encinar & Juan Félix González, 2019. "Safflower Biodiesel: Improvement of its Oxidative Stability by Using BHA and TBHQ," Energies, MDPI, vol. 12(10), pages 1-13, May.
    16. Catapano, F. & Di Iorio, S. & Magno, A. & Sementa, P. & Vaglieco, B.M., 2015. "A comprehensive analysis of the effect of ethanol, methane and methane-hydrogen blend on the combustion process in a PFI (port fuel injection) engine," Energy, Elsevier, vol. 88(C), pages 101-110.
    17. Zhu, Xinning & Zuo, Qingsong & Tang, Yuanyou & Xie, Yong & Shen, Zhuang & Yang, Xiaomei, 2022. "Performance enhancement of equilibrium regeneration in a gasoline particulate filter based on field synergy theory," Energy, Elsevier, vol. 244(PA).
    18. Zuo, Qingsong & Li, Qiming & Yang, Xiaomei & Chen, Wei & Zhu, Guohui & Shen, Zhuang & Xie, Yong & Tang, Yuanyou, 2023. "Investigation of electrically heating catalytic converter flow and temperature field performance improvement based on field synergy," Energy, Elsevier, vol. 274(C).
    19. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.