IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v318y2022ics0306261922005773.html
   My bibliography  Save this article

Study on water spraying distribution to improve the energy recovery performance of indirect evaporative coolers with nozzle arrangement optimization

Author

Listed:
  • Ma, Xiaochen
  • Shi, Wenchao
  • Yang, Hongxing

Abstract

In response to the worldwide call for energy conservation and carbon emission reduction, indirect evaporative cooling as a green and environmentally friendly technology has been extensively researched and developed. In the practical application of this technology, the spray nozzle arrangement results in different wettability factors of the wet channel surface, which accordingly has a significant impact on its cooling efficiency. Existing research has discussed indirect evaporative coolers (IECs) in various external shapes, internal configurations, and materials. However, the IEC performance improvement was rarely analyzed from the perspective of the spray nozzle arrangement. This paper developed and validated a numerical model to predict the spray water density distribution of the solid cone nozzles on the impact surface with uniformly divided square grids. The actual water spray density obtained from this model could then be used to correct the wetting factor in the existing IEC numerical model. The control variable method was applied to compare the effect of inclined angle and distance between the nozzles. According to the uniformity coefficient as well as coverage ratio of the water spray, the optimal arrangement scheme, i.e. the nozzles mounted along the centerline with the distance of 160 mm, was determined. Results showed that a uniform coefficient of 0.74 can be obtained in the optimal distribution of the full cone nozzle. Greater air cooling and dehumidification were achieved by the optimized nozzle arrangement scheme compared with the original single-line arrangement scheme of the nozzles. The coefficient of performance (COP) of the IEC system could be increased by 16% under the same operating conditions when the optimized spray nozzle arrangement was adopted, which indicated the benefit and importance of the IEC spray nozzle arrangement optimization.

Suggested Citation

  • Ma, Xiaochen & Shi, Wenchao & Yang, Hongxing, 2022. "Study on water spraying distribution to improve the energy recovery performance of indirect evaporative coolers with nozzle arrangement optimization," Applied Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:appene:v:318:y:2022:i:c:s0306261922005773
    DOI: 10.1016/j.apenergy.2022.119212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahzad, Muhammad Wakil & Burhan, Muhammad & Ybyraiymkul, Doskhan & Oh, Seung Jin & Ng, Kim Choon, 2019. "An improved indirect evaporative cooler experimental investigation," Applied Energy, Elsevier, vol. 256(C).
    2. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    3. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    4. Min, Yunran & Chen, Yi & Shi, Wenchao & Yang, Hongxing, 2021. "Applicability of indirect evaporative cooler for energy recovery in hot and humid areas: Comparison with heat recovery wheel," Applied Energy, Elsevier, vol. 287(C).
    5. Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the exergy analysis of the counter-flow dew point evaporative cooler," Energy, Elsevier, vol. 165(PB), pages 958-971.
    6. Zheng, Bin & Guo, Chunmei & Chen, Tong & Shi, Qi & Lv, Jian & You, Yuwen, 2019. "Development of an experimental validated model of cross-flow indirect evaporative cooler with condensation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Park, Joon-Young & Kim, Beom-Jun & Yoon, Soo-Yeol & Byon, Yoo-Suk & Jeong, Jae-Weon, 2019. "Experimental analysis of dehumidification performance of an evaporative cooling-assisted internally cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 235(C), pages 177-185.
    8. Purva Khera & Miss Stephanie Y Ng & Ms. Sumiko Ogawa & Ms. Ratna Sahay, 2021. "Digital Financial Inclusion in Emerging and Developing Economies: A New Index," IMF Working Papers 2021/090, International Monetary Fund.
    9. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    10. Chen, Yi & Yan, Huaxia & Luo, Yimo & Yang, Hongxing, 2019. "A proportional–integral (PI) law based variable speed technology for temperature control in indirect evaporative cooling system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Min, Yunran & Chen, Yi & Yang, Hongxing, 2019. "A statistical modeling approach on the performance prediction of indirect evaporative cooling energy recovery systems," Applied Energy, Elsevier, vol. 255(C).
    12. Kim, Hui-Jeong & Ham, Sang-Woo & Yoon, Dong-Seob & Jeong, Jae-Weon, 2017. "Cooling performance measurement of two cross-flow indirect evaporative coolers in general and regenerative operation modes," Applied Energy, Elsevier, vol. 195(C), pages 268-277.
    13. Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler," Applied Energy, Elsevier, vol. 217(C), pages 126-142.
    14. Chen, Yi & Yang, Hongxing & Luo, Yimo, 2017. "Parameter sensitivity analysis and configuration optimization of indirect evaporative cooler (IEC) considering condensation," Applied Energy, Elsevier, vol. 194(C), pages 440-453.
    15. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2020. "Analytical/experimental sensitivity study of key design and operational parameters of perforated Maisotsenko cooler based on novel wet-surface theory," Applied Energy, Elsevier, vol. 262(C).
    16. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Rampazzo, Mirco & Lionello, Michele & Beghi, Alessandro & Sisti, Enrico & Cecchinato, Luca, 2019. "A static moving boundary modelling approach for simulation of indirect evaporative free cooling systems," Applied Energy, Elsevier, vol. 250(C), pages 1719-1728.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Dae Hyeok & Lee, Jae Won & Kang, Yong Tae, 2023. "Experimental study on continuous running performance and energy consumption analysis of portable air-conditioner with variable condensate supply methods," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Shi, Wenchao & Min, Yunran & Ma, Xiaochen & Chen, Yi & Yang, Hongxing, 2022. "Dynamic performance evaluation of porous indirect evaporative cooling system with intermittent spraying strategies," Applied Energy, Elsevier, vol. 311(C).
    3. Qian Chen & Muhammad Burhan & M Kum Ja & Muhammad Wakil Shahzad & Doskhan Ybyraiymkul & Hongfei Zheng & Xin Cui & Kim Choon Ng, 2022. "Hybrid Indirect Evaporative Cooling-Mechanical Vapor Compression System: A Mini-Review," Energies, MDPI, vol. 15(20), pages 1-17, October.
    4. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    5. Oh, Seung Jin & Shahzad, Muhammad Wakil & Burhan, Muhammad & Chun, Wongee & Kian Jon, Chua & KumJa, M. & Ng, Kim Choon, 2019. "Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling," Energy, Elsevier, vol. 168(C), pages 505-515.
    6. Min, Yunran & Chen, Yi & Shi, Wenchao & Yang, Hongxing, 2021. "Applicability of indirect evaporative cooler for energy recovery in hot and humid areas: Comparison with heat recovery wheel," Applied Energy, Elsevier, vol. 287(C).
    7. Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
    8. Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
    9. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
    10. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Livas-García, A. & Xamán, J. & Bassam, A. & Maisotsenko, Valeriy, 2021. "Projecting global water footprints diminution of a dew-point cooling system: Sustainability approach assisted with energetic and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2018. "Development and validation of an analytical model for perforated (multi-stage) regenerative M-cycle air cooler," Applied Energy, Elsevier, vol. 228(C), pages 2176-2194.
    12. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Liu, Lin, 2021. "Review of the recent advances in dew point evaporative cooling technology: 3E (energy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Zanchini, Enzo & Naldi, Claudia, 2019. "Energy saving obtainable by applying a commercially available M-cycle evaporative cooling system to the air conditioning of an office building in North Italy," Energy, Elsevier, vol. 179(C), pages 975-988.
    14. Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
    15. Zhang, Hongkuan & Ma, Hongting & Ma, Shuo, 2022. "Energy, exergy, economic and environmental analysis of an indirect evaporative cooling integrated with liquid dehumidification," Energy, Elsevier, vol. 253(C).
    16. Zheng, Bin & Guo, Chunmei & Chen, Tong & Shi, Qi & Lv, Jian & You, Yuwen, 2019. "Development of an experimental validated model of cross-flow indirect evaporative cooler with condensation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Matsui, Kohei & Lin, Jie & Thu, Kyaw & Miyazaki, Takahiko, 2022. "On the performance improvement of an inverted Brayton Cycle using a regenerative heat and mass exchanger," Energy, Elsevier, vol. 249(C).
    18. Cui, Xin & Yang, Chuanjun & Yan, Weichao & Zhang, Lianying & Wan, Yangda & Chua, Kian Jon, 2023. "Experimental study on a moisture-conducting fiber-assisted tubular indirect evaporative cooler," Energy, Elsevier, vol. 278(PB).
    19. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2020. "Analytical/experimental sensitivity study of key design and operational parameters of perforated Maisotsenko cooler based on novel wet-surface theory," Applied Energy, Elsevier, vol. 262(C).
    20. Park, Joon-Young & Kim, Beom-Jun & Yoon, Soo-Yeol & Byon, Yoo-Suk & Jeong, Jae-Weon, 2019. "Experimental analysis of dehumidification performance of an evaporative cooling-assisted internally cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 235(C), pages 177-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:318:y:2022:i:c:s0306261922005773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.