IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223017292.html
   My bibliography  Save this article

Experimental study on continuous running performance and energy consumption analysis of portable air-conditioner with variable condensate supply methods

Author

Listed:
  • Kim, Dae Hyeok
  • Lee, Jae Won
  • Kang, Yong Tae

Abstract

In this study, the continuous operation and efficiency variation of a portable air conditioner under high-humidity conditions were experimentally studied by changing the condenser path and condensate supply method. By applying countercurrent path, drain hole, and optimized splash fan position and structure, the coefficient of performance (COP) could be enhanced by approximately 8.1% without increasing the cost. However, the increase in condensate made continuous operation impossible under high humidity conditions of 90% or more as it was optimized for operation at a relative humidity of 50% based on the general capacity measurement conditions in the market. To increase the operating time under a 90% relative humidity condition, cycle temperature and surface abnormalities were evaluated. The cycle temperature of the condenser increased before the end of the continuous operation. The condensate did not evaporate from the surface of the condenser at a sufficient rate and the blocked area increased. Finally, the continuous operation time can be extended by changing the cycle by using an electronic expansion valve.

Suggested Citation

  • Kim, Dae Hyeok & Lee, Jae Won & Kang, Yong Tae, 2023. "Experimental study on continuous running performance and energy consumption analysis of portable air-conditioner with variable condensate supply methods," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017292
    DOI: 10.1016/j.energy.2023.128335
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Xiaochen & Shi, Wenchao & Yang, Hongxing, 2022. "Study on water spraying distribution to improve the energy recovery performance of indirect evaporative coolers with nozzle arrangement optimization," Applied Energy, Elsevier, vol. 318(C).
    2. Harby, K. & Al-Amri, Fahad, 2019. "An investigation on energy savings of a split air-conditioning using different commercial cooling pad thicknesses and climatic conditions," Energy, Elsevier, vol. 182(C), pages 321-336.
    3. Kumar, Shiva & Salins, Sampath Suranjan & Reddy, S.V. Kota & Nair, Prasanth Sreekumar, 2021. "Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
    2. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effect of random fiber distribution on the performance of counter-flow hollow fiber membrane-based direct evaporative coolers," Energy, Elsevier, vol. 282(C).
    3. Chen, Wanhe & Yin, Yonggao & Zhao, Xingwang & Fan, Fangsu & Cao, Bowen & Ji, Qiang & Xu, Guoying, 2023. "Sepiolite based humidity-control coating specially for alleviate the condensation problem of radiant cooling panel," Energy, Elsevier, vol. 272(C).
    4. Ana Tejero‐González & Antonio Franco‐Salas, 2022. "Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    5. Almohammadi, K.M. & Harby, K., 2020. "Operational conditions optimization of a proposed solar-powered adsorption cooling system: Experimental, modeling, and optimization algorithm techniques," Energy, Elsevier, vol. 206(C).
    6. Saedpanah, Ehsan & Pasdarshahri, Hadi, 2021. "Performance assessment of hybrid desiccant air conditioning systems: A dynamic approach towards achieving optimum 3E solution across the lifespan," Energy, Elsevier, vol. 234(C).
    7. Krzysztof Rajski & Ali Sohani & Sina Jafari & Jan Danielewicz & Marderos Ara Sayegh, 2022. "Energy Performance of a Novel Hybrid Air Conditioning System Built on Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler," Energies, MDPI, vol. 15(7), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.