IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v272y2023ics0360544223005236.html
   My bibliography  Save this article

Sepiolite based humidity-control coating specially for alleviate the condensation problem of radiant cooling panel

Author

Listed:
  • Chen, Wanhe
  • Yin, Yonggao
  • Zhao, Xingwang
  • Fan, Fangsu
  • Cao, Bowen
  • Ji, Qiang
  • Xu, Guoying

Abstract

The condensation phenomenon at the radiant cooling panel seriously affects indoor air quality. To alleviate this phenomenon, proposed the method that applies the humidity-control material (HCM) on the radiant cooling panel surface, which can make the novel radiant cooling panel not only regulates the indoor air temperature but also play the role of humidity regulation. HCM can delay condensation time through its hygroscopic properties, which is different from the surface direct condensation of the radiant cooling panel. A kind of HCM specially used to alleviate condensation phenomenon at the radiant cooling panel is prepared for this purpose. Firstly, sepiolite based humidity-control material (SBHCM) with good humidity control ability under the conditioning of high relative humidity environment is prepared with sepiolite as porous matrix and KCl as additive according to the characteristic of the surface air at the radiant cooling panel. Then, it is further made into sepiolite based humidity-control coating (SBHCC) which can be used in practice and contrasted with the commonly used hygroscopic coatings diatomite and gypsum. Finally, the condensation process of the novel radiant cooling panel based on the three humidity control materials is tested. The results show that sepiolite treated with 10% KCl solution has the best moisture absorption/desorption characteristics. SBHCC has greater moisture absorption/desorption capacity and rate than diatomite and gypsum under the high relative humidity environment. The HCM can extend the surface condensation time of the radiant cooling panel, while the SBHCC with the best hygroscopic properties can validly extend the condensation time among the three. This study can provide the material basis for the method of using HCM to alleviate the condensation problem of the radiant cooling panel.

Suggested Citation

  • Chen, Wanhe & Yin, Yonggao & Zhao, Xingwang & Fan, Fangsu & Cao, Bowen & Ji, Qiang & Xu, Guoying, 2023. "Sepiolite based humidity-control coating specially for alleviate the condensation problem of radiant cooling panel," Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005236
    DOI: 10.1016/j.energy.2023.127129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223005236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grinham, Jonathan & Craig, Salmaan & Ingber, Donald E. & Bechthold, Martin, 2020. "Origami microfluidics for radiant cooling with small temperature differences in buildings," Applied Energy, Elsevier, vol. 277(C).
    2. Joe, Jaewan & Karava, Panagiota, 2019. "A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings," Applied Energy, Elsevier, vol. 245(C), pages 65-77.
    3. Hout, Mohamad & Ghaddar, Nesreen & Ghali, Kamel & Ismail, Nagham & Simonetti, Marco & Fracastoro, Gian Vincenzo & Virgone, Joseph & Zoughaib, Assaad, 2017. "Displacement ventilation with cooled liquid desiccant dehumidification membrane at ceiling; modeling and design charts," Energy, Elsevier, vol. 139(C), pages 1003-1015.
    4. Zhang, Yan & Teoh, Bak Koon & Wu, Maozhi & Chen, Jiayu & Zhang, Limao, 2023. "Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence," Energy, Elsevier, vol. 262(PA).
    5. Shu, Haiwen & Bie, Xu & Zhang, Hongliang & Xu, Xiaoyue & Du, Yu & Ma, Yi & Duanmu, Lin & Cao, Guangyu, 2020. "Natural heat transfer air-conditioning terminal device and its system configuration for ultra-low energy buildings," Renewable Energy, Elsevier, vol. 154(C), pages 1113-1121.
    6. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    7. Rao, Zhonghao & Wang, Shuangfeng & Zhang, Zhengguo, 2012. "Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3136-3145.
    8. Xing, Daoming & Li, Nianping & Cui, Haijiao & Zhou, Linxuan & Liu, Qingqing, 2020. "Theoretical study of infrared transparent cover preventing condensation on indoor radiant cooling surfaces," Energy, Elsevier, vol. 201(C).
    9. Jangsten, Maria & Filipsson, Peter & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings," Energy, Elsevier, vol. 199(C).
    10. Zhao, Kang & Liu, Xiao-Hua & Jiang, Yi, 2016. "Application of radiant floor cooling in large space buildings – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1083-1096.
    11. Ge, T.S. & Hao, R.Y. & Dai, Y.J. & Wang, R.Z. & Yan, H., 2017. "Experimental investigation on anti-condensation characteristic of desiccant coated metal cabinet," Renewable Energy, Elsevier, vol. 113(C), pages 835-845.
    12. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Kumar, Shiva & Salins, Sampath Suranjan & Reddy, S.V. Kota & Nair, Prasanth Sreekumar, 2021. "Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    3. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    4. Liu, Xiaochen & Zhang, Tao & Liu, Xiaohua & Li, Lingshan & Lin, Lin & Jiang, Yi, 2021. "Energy saving potential for space heating in Chinese airport terminals: The impact of air infiltration," Energy, Elsevier, vol. 215(PB).
    5. Hou, Guolian & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2020. "Fuzzy modeling and fast model predictive control of gas turbine system," Energy, Elsevier, vol. 200(C).
    6. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    7. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    8. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    9. Lina Seduikyte & Laura Stasiulienė & Tadas Prasauskas & Dainius Martuzevičius & Jurgita Černeckienė & Tadas Ždankus & Mantas Dobravalskis & Paris Fokaides, 2019. "Field Measurements and Numerical Simulation for the Definition of the Thermal Stratification and Ventilation Performance in a Mechanically Ventilated Sports Hall," Energies, MDPI, vol. 12(12), pages 1-14, June.
    10. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    11. Yang, Junqin & Zhao, Hui & Li, Chenchen & Li, Xiuwei, 2021. "A direct energy reuse strategy for absorption air-conditioning system based on electrode regeneration method," Renewable Energy, Elsevier, vol. 168(C), pages 353-364.
    12. Abdelkader Laafer & Djaffar Semmar & Abdelkader Hamid & Mahmoud Bourouis, 2021. "Thermal and Surface Radiosity Analysis of an Underfloor Heating System in a Bioclimatic Habitat," Energies, MDPI, vol. 14(13), pages 1-17, June.
    13. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
    14. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    15. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effect of random fiber distribution on the performance of counter-flow hollow fiber membrane-based direct evaporative coolers," Energy, Elsevier, vol. 282(C).
    17. Jia, Hongyuan & Pang, Xiufeng & Haves, Philip, 2018. "Experimentally-determined characteristics of radiant systems for office buildings," Applied Energy, Elsevier, vol. 221(C), pages 41-54.
    18. Zhang, Yan & Teoh, Bak Koon & Zhang, Limao, 2023. "Exploring driving force factors of building energy use and GHG emission using a spatio-temporal regression method," Energy, Elsevier, vol. 269(C).
    19. Huang, Sen & Lin, Yashen & Chinde, Venkatesh & Ma, Xu & Lian, Jianming, 2021. "Simulation-based performance evaluation of model predictive control for building energy systems," Applied Energy, Elsevier, vol. 281(C).
    20. Zu, Kan & Qin, Menghao, 2022. "Optimization of the hygrothermal performance of novel metal-organic framework (MOF) based humidity pump: A CFD approach," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.