IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v314y2022ics0306261922003695.html
   My bibliography  Save this article

Long-term effects of ilmenite on a micro-scale bubbling fluidized bed combined heat and power pilot plant for oxygen carrier aided combustion of wood

Author

Listed:
  • Schneider, T.
  • Moffitt, J.
  • Volz, N.
  • Müller, D.
  • Karl, J.

Abstract

Small-scale solutions for the application of solid biomass fuels for the generation of heat and power with fluidized beds are hardly available. The main issues comprise agglomeration and slagging, incomplete burnout of combustibles and low efficiencies. During so-called oxygen carrier aided combustion, an oxygen carrier replaces the conventional bed material and balances the local and temporal oxygen supply in the fluidized bed. This results in a more homogeneous combustion and increased heat release in the fluidized bed area. Especially for small-scale bubbling fluidized bed solutions, these effects require an adapted plant setup. However, applications of oxygen carriers in small-scale bubbling fluidized bed boilers are barely reported. Process parameters differ significantly from large-scale circulating fluidized beds regarding resident times, particle volume fractions and size distributions. Hence, this research examines the enhancing effect of 50 wt% ilmenite in a 45 kWth bubbling fluidized bed fired combined heat and power plant. Long-term measurements in a field test environment promise a potential decrease of the carbon monoxide emissions of up to 75 %. Lower fluidized bed temperatures and apparently poor combustion conditions even enhance the positive effect of ilmenite. Moreover, the porous ilmenite particles interact with ash compounds such as potassium, calcium and magnesium. The migration of potassium into the inner particle mitigates the formation of low-melting layers around the particle. Calcium and magnesium form titanium oxide phases in the outer particle layer, below an iron enriched particle shell. Thereby, ilmenite prevents the formation of sticky particle layers, which addresses agglomeration and slagging issues. The particle shell is subject of ongoing attrition leading to a constant entrainment of active material from the combustion chamber. Therefore, a continuous addition of fresh material is essential to sustain the beneficial impact of the oxygen carrier. The optimal operation period for the oxygen carrier additive is supposed to cover 1–2 weeks.

Suggested Citation

  • Schneider, T. & Moffitt, J. & Volz, N. & Müller, D. & Karl, J., 2022. "Long-term effects of ilmenite on a micro-scale bubbling fluidized bed combined heat and power pilot plant for oxygen carrier aided combustion of wood," Applied Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003695
    DOI: 10.1016/j.apenergy.2022.118953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922003695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Liangyong & Bao, Jinhua & Kong, Liang & Combs, Megan & Nikolic, Heather S. & Fan, Zhen & Liu, Kunlei, 2016. "The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion," Applied Energy, Elsevier, vol. 184(C), pages 9-18.
    2. Garcia, Eduardo & Liu, Hao, 2022. "Ilmenite as alternative bed material for the combustion of coal and biomass blends in a fluidised bed combustor to improve combustion performance and reduce agglomeration tendency," Energy, Elsevier, vol. 239(PA).
    3. Schneider, T. & Müller, D. & Karl, J., 2020. "A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Chen, Liangyong & Bao, Jinhua & Kong, Liang & Combs, Megan & Nikolic, Heather S. & Fan, Zhen & Liu, Kunlei, 2017. "Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion," Applied Energy, Elsevier, vol. 197(C), pages 40-51.
    5. Thon, Andreas & Kramp, Marvin & Hartge, Ernst-Ulrich & Heinrich, Stefan & Werther, Joachim, 2014. "Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier," Applied Energy, Elsevier, vol. 118(C), pages 309-317.
    6. Bao, Jinhua & Li, Zhenshan & Cai, Ningsheng, 2014. "Interaction between iron-based oxygen carrier and four coal ashes during chemical looping combustion," Applied Energy, Elsevier, vol. 115(C), pages 549-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling, Jester Lih Jie & Yang, Won & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2023. "A comparative review on advanced biomass oxygen fuel combustion technologies for carbon capture and storage," Energy, Elsevier, vol. 284(C).
    2. Tanja Schneider & Dominik Müller & Jürgen Karl, 2022. "Effect of Natural Ilmenite on the Solid Biomass Conversion of Inhomogeneous Fuels in Small-Scale Bubbling Fluidized Beds," Energies, MDPI, vol. 15(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    2. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
    3. Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
    4. Schmitz, Matthias & Linderholm, Carl Johan, 2016. "Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10kW pilot," Applied Energy, Elsevier, vol. 169(C), pages 729-737.
    5. Liu, Zhuo & Li, Jianbo & Long, Xiaofei & Lu, Xiaofeng, 2022. "Mechanisms and characteristics of ash layer formation on bed particles during circulating fluidized bed combustion of Zhundong lignite," Energy, Elsevier, vol. 245(C).
    6. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    7. Martin Haaf & Peter Ohlemüller & Jochen Ströhle & Bernd Epple, 2020. "Techno-economic assessment of alternative fuels in second-generation carbon capture and storage processes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 149-164, February.
    8. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    9. Coppola, Antonio & Solimene, Roberto & Bareschino, Piero & Salatino, Piero, 2015. "Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 449-461.
    10. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    11. Xiaosong Zhang & Sheng Li & Hongguang Jin, 2014. "A Polygeneration System Based on Multi-Input Chemical Looping Combustion," Energies, MDPI, vol. 7(11), pages 1-12, November.
    12. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    13. Yang, Hang-Suin & Zhu, Hao-Qiang & Xiao, Xian-Zhong, 2023. "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, Elsevier, vol. 275(C).
    14. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Johannes Haus & Lennard Lindmüller & Timo Dymala & Kolja Jarolin & Yi Feng & Ernst-Ulrich Hartge & Stefan Heinrich & Joachim Werther, 2020. "Increasing the efficiency of chemical looping combustion of biomass by a dual-stage fuel reactor design to reduce carbon capture costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 969-986, August.
    16. Abad, Alberto & Adánez, Juan & Gayán, Pilar & de Diego, Luis F. & García-Labiano, Francisco & Sprachmann, Gerald, 2015. "Conceptual design of a 100MWth CLC unit for solid fuel combustion," Applied Energy, Elsevier, vol. 157(C), pages 462-474.
    17. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    18. Miller, Duane D. & Siriwardane, Ranjani & Poston, James, 2015. "Fluidized-bed and fixed-bed reactor testing of methane chemical looping combustion with MgO-promoted hematite," Applied Energy, Elsevier, vol. 146(C), pages 111-121.
    19. Ștefan-Dominic Voronca & Monica Siroux & George Darie, 2022. "Experimental Characterization of Transitory Functioning Regimes of a Biomass Stirling Micro-CHP," Energies, MDPI, vol. 15(15), pages 1-23, July.
    20. Ohlemüller, Peter & Alobaid, Falah & Gunnarsson, Adrian & Ströhle, Jochen & Epple, Bernd, 2015. "Development of a process model for coal chemical looping combustion and validation against 100kWth tests," Applied Energy, Elsevier, vol. 157(C), pages 433-448.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.