IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v25y2020i6d10.1007_s11027-020-09917-2.html
   My bibliography  Save this article

Increasing the efficiency of chemical looping combustion of biomass by a dual-stage fuel reactor design to reduce carbon capture costs

Author

Listed:
  • Johannes Haus

    (Hamburg University of Technology)

  • Lennard Lindmüller

    (Hamburg University of Technology)

  • Timo Dymala

    (Hamburg University of Technology)

  • Kolja Jarolin

    (Hamburg University of Technology)

  • Yi Feng

    (Zhejiang University)

  • Ernst-Ulrich Hartge

    (Hamburg University of Technology)

  • Stefan Heinrich

    (Hamburg University of Technology)

  • Joachim Werther

    (Hamburg University of Technology)

Abstract

This paper analyzes the capabilities of a pilot-scale chemical looping combustion plant firing wood biomass in two stages to efficiently achieve negative carbon dioxide emissions. The utilized in situ gasification-chemical looping combustion (iG-CLC) process isolates the oxygen supply via air from the fuel conversion itself with the help of two separate fluidized bed reactors and an oxygen carrier to supply the necessary oxygen for the combustion. As a result, a relatively pure stream of carbon dioxide and steam is generated. Thus, the process makes capturing carbon emissions more feasible since it eliminates the need for the cost- and energy-intensive separation of the produced gases. A major issue when using biomass in a chemical looping plant is the high amount of the volatiles exiting unconverted. This problem was mitigated by using a two-stage fuel reactor system. Two bubbling fluidized beds were arranged one upon the other. The lower stage, where the fuel is introduced, is used to release the volatiles and partly convert them. The remaining volatiles rise up into the second stage and are further converted to a high degree. A series of experiments were carried out with a 25-kWth pilot plant located at the Hamburg University of Technology. Gas concentrations were continuously measured after both stages of the fuel reactor to see the gradual conversion of the fuel gases. Additionally, carbon slip at the exhaust was measured to show the effectiveness. The experiments with the reactor concept showed promising results since already at a reactor temperature of 850 °C, the total oxygen demand needed to oxidize the combustible component in the exhaust gas was well below 2%. The carbon dioxide (CO2) capture efficiency when using German hardwood slightly decreased to 93–96% compared to 97% for German lignite. In the future, the reactor design must prove that it scales and that the efficiency can be further increased. Nevertheless, firing biomass with a two-stage iG-CLC process might allow a cost-efficient negative carbon dioxide emission while generating heat with relatively high efficiency. Therefore, it might be a sustainable alternative to generate heat in the future.

Suggested Citation

  • Johannes Haus & Lennard Lindmüller & Timo Dymala & Kolja Jarolin & Yi Feng & Ernst-Ulrich Hartge & Stefan Heinrich & Joachim Werther, 2020. "Increasing the efficiency of chemical looping combustion of biomass by a dual-stage fuel reactor design to reduce carbon capture costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 969-986, August.
  • Handle: RePEc:spr:masfgc:v:25:y:2020:i:6:d:10.1007_s11027-020-09917-2
    DOI: 10.1007/s11027-020-09917-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-020-09917-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-020-09917-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thon, Andreas & Kramp, Marvin & Hartge, Ernst-Ulrich & Heinrich, Stefan & Werther, Joachim, 2014. "Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier," Applied Energy, Elsevier, vol. 118(C), pages 309-317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    2. Xiaosong Zhang & Sheng Li & Hongguang Jin, 2014. "A Polygeneration System Based on Multi-Input Chemical Looping Combustion," Energies, MDPI, vol. 7(11), pages 1-12, November.
    3. Ohlemüller, Peter & Alobaid, Falah & Gunnarsson, Adrian & Ströhle, Jochen & Epple, Bernd, 2015. "Development of a process model for coal chemical looping combustion and validation against 100kWth tests," Applied Energy, Elsevier, vol. 157(C), pages 433-448.
    4. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    5. Ming Yang & Da Song & Yang Li & Jinzeng Cao & Guoqiang Wei & Fang He, 2023. "High-Quality Syngas Production by Chemical Looping Gasification of Bituminite Based on NiFe 2 O 4 Oxygen Carrier," Energies, MDPI, vol. 16(8), pages 1-17, April.
    6. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2018. "Design and techno-economic optimization of a rotary chemical looping combustion power plant with CO2 capture," Applied Energy, Elsevier, vol. 231(C), pages 1179-1190.
    7. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
    8. Berdugo Vilches, Teresa & Lind, Fredrik & Rydén, Magnus & Thunman, Henrik, 2017. "Experience of more than 1000h of operation with oxygen carriers and solid biomass at large scale," Applied Energy, Elsevier, vol. 190(C), pages 1174-1183.
    9. Kim, Daewook & Jang, Jae Jun & Nam, Hyungseok & Kim, Jae Young & Won, Yooseob & Lee, Seung-Yong & Hwang, Byung Wook & Choi, Yujin & Kim, Hana & Baek, Jeom-In & Ryu, Ho-Jung, 2022. "Studies on the cyclone dipleg flow characteristics in a CFB for designing 3 MWth scale chemical looping combustor," Energy, Elsevier, vol. 253(C).
    10. Schmitz, Matthias & Linderholm, Carl Johan, 2016. "Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10kW pilot," Applied Energy, Elsevier, vol. 169(C), pages 729-737.
    11. Martin Haaf & Peter Ohlemüller & Jochen Ströhle & Bernd Epple, 2020. "Techno-economic assessment of alternative fuels in second-generation carbon capture and storage processes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 149-164, February.
    12. Coppola, Antonio & Solimene, Roberto & Bareschino, Piero & Salatino, Piero, 2015. "Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 449-461.
    13. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    14. Abad, Alberto & Adánez, Juan & Gayán, Pilar & de Diego, Luis F. & García-Labiano, Francisco & Sprachmann, Gerald, 2015. "Conceptual design of a 100MWth CLC unit for solid fuel combustion," Applied Energy, Elsevier, vol. 157(C), pages 462-474.
    15. Miller, Duane D. & Siriwardane, Ranjani & Poston, James, 2015. "Fluidized-bed and fixed-bed reactor testing of methane chemical looping combustion with MgO-promoted hematite," Applied Energy, Elsevier, vol. 146(C), pages 111-121.
    16. Abad, Alberto & Pérez-Vega, Raúl & de Diego, Luis F. & García-Labiano, Francisco & Gayán, Pilar & Adánez, Juan, 2015. "Design and operation of a 50kWth Chemical Looping Combustion (CLC) unit for solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 295-303.
    17. Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.
    18. Rana, Shazadi & Sun, Zhenkun & Mehrani, Poupak & Hughes, Robin & Macchi, Arturo, 2019. "Ilmenite oxidation kinetics for pressurized chemical looping combustion of natural gas," Applied Energy, Elsevier, vol. 238(C), pages 747-759.
    19. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    20. Sette, Erik & Berdugo Vilches, Teresa & Pallarès, David & Johnsson, Filip, 2016. "Measuring fuel mixing under industrial fluidized-bed conditions – A camera-probe based fuel tracking system," Applied Energy, Elsevier, vol. 163(C), pages 304-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:25:y:2020:i:6:d:10.1007_s11027-020-09917-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.