Studies on the cyclone dipleg flow characteristics in a CFB for designing 3 MWth scale chemical looping combustor
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.124154
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
- Ma, Jinchen & Zhao, Haibo & Tian, Xin & Wei, Yijie & Rajendran, Sharmen & Zhang, Yongliang & Bhattacharya, Sankar & Zheng, Chuguang, 2015. "Chemical looping combustion of coal in a 5kWth interconnected fluidized bed reactor using hematite as oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 304-313.
- Thon, Andreas & Kramp, Marvin & Hartge, Ernst-Ulrich & Heinrich, Stefan & Werther, Joachim, 2014. "Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier," Applied Energy, Elsevier, vol. 118(C), pages 309-317.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kim, Daewook & Won, Yooseob & Hwang, Byung Wook & Kim, Jae Young & Kim, Hana & Choi, Yujin & Lee, Yu-Ri & Lee, Seung-Yong & Jo, Sung-Ho & Park, Young Cheol & Baek, Jeom-In & Nam, Hyungseok & Lee, Doye, 2023. "Loop-seal flow characteristics of a circulating fluidized bed for 3 MWth scale chemical looping combustion system," Energy, Elsevier, vol. 274(C).
- Kim, Daewook & Won, Yooseob & Choi, Jeong-Hoo & Joo, Ji Bong & Kim, Jae Young & Park, Young Cheol & Jo, Sung-Ho & Ryu, Ho-Jung, 2024. "Attrition rate of potassium-based sorbent particle in a riser and cyclone of a circulating fluidized bed for a 10 MWe scale post-combustion CO2 capture system," Energy, Elsevier, vol. 307(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
- Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
- Ming Yang & Da Song & Yang Li & Jinzeng Cao & Guoqiang Wei & Fang He, 2023. "High-Quality Syngas Production by Chemical Looping Gasification of Bituminite Based on NiFe 2 O 4 Oxygen Carrier," Energies, MDPI, vol. 16(8), pages 1-17, April.
- Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
- Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
- Feng, Xiangdong & Liu, Shanjian & Yue, Kang & Wei, Heng & Bi, Dongmei & Zhao, Wenjing, 2023. "Insight into the promotional effect of Mn-modified nitrogenous biochar on the NH3-SCR denitrification activity at low temperatures," Energy, Elsevier, vol. 285(C).
- Schmitz, Matthias & Linderholm, Carl Johan, 2016. "Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10kW pilot," Applied Energy, Elsevier, vol. 169(C), pages 729-737.
- Martin Haaf & Peter Ohlemüller & Jochen Ströhle & Bernd Epple, 2020. "Techno-economic assessment of alternative fuels in second-generation carbon capture and storage processes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 149-164, February.
- Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
- Coppola, Antonio & Solimene, Roberto & Bareschino, Piero & Salatino, Piero, 2015. "Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 449-461.
- Yang, Jie & Dong, Senlin & Xie, Longgui & Cen, Qihong & Zheng, Dalong & Ma, Liping & Dai, Quxiu, 2023. "Analysis of hydrogen-rich syngas generation in chemical looping gasification of lignite: Application of carbide slag as the oxygen carrier, hydrogen carrier, and in-situ carbon capture agent," Energy, Elsevier, vol. 283(C).
- M. Shahabuddin & Tanvir Alam, 2022. "Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies," Energies, MDPI, vol. 15(12), pages 1-20, June.
- Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
- Xiaosong Zhang & Sheng Li & Hongguang Jin, 2014. "A Polygeneration System Based on Multi-Input Chemical Looping Combustion," Energies, MDPI, vol. 7(11), pages 1-12, November.
- Xiaoliang Yu & Jin Yan & Rongyue Sun & Lin Mei & Yanmin Li & Shuyuan Wang & Fan Wang & Yicheng Gu, 2023. "An Experimental Study on SO 2 Emission and Ash Deposition Characteristics of High Alkali Red Mud under Large Proportional Co-Combustion Conditions in Fluidized Bed," Energies, MDPI, vol. 16(6), pages 1-17, March.
- Johannes Haus & Lennard Lindmüller & Timo Dymala & Kolja Jarolin & Yi Feng & Ernst-Ulrich Hartge & Stefan Heinrich & Joachim Werther, 2020. "Increasing the efficiency of chemical looping combustion of biomass by a dual-stage fuel reactor design to reduce carbon capture costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 969-986, August.
- Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
- Abad, Alberto & Adánez, Juan & Gayán, Pilar & de Diego, Luis F. & García-Labiano, Francisco & Sprachmann, Gerald, 2015. "Conceptual design of a 100MWth CLC unit for solid fuel combustion," Applied Energy, Elsevier, vol. 157(C), pages 462-474.
- Miller, Duane D. & Siriwardane, Ranjani & Poston, James, 2015. "Fluidized-bed and fixed-bed reactor testing of methane chemical looping combustion with MgO-promoted hematite," Applied Energy, Elsevier, vol. 146(C), pages 111-121.
- Yang, Li & Li, Caifu & Song, Chen & Zhu, Dan & Zhao, Jiangyuan & Liu, Fang & Liu, Xiaorui, 2023. "Spatial migration of lattice oxygen for copper-iron based oxygen carriers in chemical looping combustion," Energy, Elsevier, vol. 285(C).
More about this item
Keywords
CO2 capture; Chemical looping combustion; CFB; Dipleg; 3 MWth;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s036054422201057x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.