IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v303y2021ics0306261921008345.html
   My bibliography  Save this article

Quantification on fuel cell degradation and techno-economic analysis of a hydrogen-based grid-interactive residential energy sharing network with fuel-cell-powered vehicles

Author

Listed:
  • He, Yingdong
  • Zhou, Yuekuan
  • Wang, Zhe
  • Liu, Jia
  • Liu, Zhengxuan
  • Zhang, Guoqiang

Abstract

Hydrogen-based (H2-based) interactive energy networks for buildings and transportations provide novel solutions for carbon-neutrality transition, regional energy flexibility and independence on fossil fuel consumption, where vehicle fuel cells are key components for H2-electricity conversion and clean power supply. However, due to the complexity in thermodynamic working environments and frequent on/off operations, the proton exchange membrane fuel cells (PEMFCs) suffer from performance degradation, depending on cabin heat balance and power requirements, and the ignorance of the degradation may lead to the performance overestimation. In order to quantify fuel cell degradation in both daily cruise and vehicle-to-grid (V2G) interactions, this study firstly proposes a two-space cabin thermal model to quantify the ambient temperature of vehicle PEMFCs and the power supply from PEMFCs to vehicle HVAC systems. Afterwards, a stack voltage model is proposed to quantify the fuel cell degradation for multiple purposes, such as daily transportation and V2G interactions. Afterwards, the two models are coupled in a community-level based building-vehicle energy network, consisting of twenty single residential buildings, rooftop PV systems, four hydrogen vehicles (HVs), a H2 station, community-served micro power grid, local main power grid, and local H2 pipelines, located in California, U.S.A. Comparative analysis with and without fuel cell degradation is conducted to study the impact of dynamic fuel cell degradation on the energy flexibility and operating cost. Furthermore, a parametrical analysis is conducted on the integrated HV quantity and the grid feed-in tariff to reach trade-off strategies between associated fuel cell degradation costs and grid import cost savings. The results indicate that, in the proposed hydrogen-based building-vehicle energy network, the total fuel cell degradation is 3.16% per vehicle within one year, where 2.50% and 0.66% are caused by daily transportation and V2G interactions, respectively. Furthermore, in the H2-based residential community, the total fuel cell degradation cost is US$6945.2, accounting for 33.4% of the total operating cost at $20770.61. The sensitivity analysis results showed that, when the HV quantity increases to twenty, the fuel cell degradation of each HV decreases to 2.50%, whereas the total fuel cell degradation cost increases to 42.8% of the total operating cost. Last but not the least, the cost saving by V2G interactions can compensate the fuel cell degradation cost when the grid feed-in tariff is reduced by 40%. Research results can provide basic modelling tools on dynamic fuel cell degradation, in respect to vehicle power supply, vehicle HVAC and V2G interactions, together with techno-economic feasibility analysis, paving path for the development of hydrogen energy for the carbon-neutrality transition.

Suggested Citation

  • He, Yingdong & Zhou, Yuekuan & Wang, Zhe & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2021. "Quantification on fuel cell degradation and techno-economic analysis of a hydrogen-based grid-interactive residential energy sharing network with fuel-cell-powered vehicles," Applied Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921008345
    DOI: 10.1016/j.apenergy.2021.117444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Szima, Szabolcs & Nazir, Shareq Mohd & Cloete, Schalk & Amini, Shahriar & Fogarasi, Szabolcs & Cormos, Ana-Maria & Cormos, Calin-Cristian, 2019. "Gas switching reforming for flexible power and hydrogen production to balance variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 207-219.
    3. Firtina-Ertis, Irem & Acar, Canan & Erturk, Ercan, 2020. "Optimal sizing design of an isolated stand-alone hybrid wind-hydrogen system for a zero-energy house," Applied Energy, Elsevier, vol. 274(C).
    4. Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier & Iribarren, Diego, 2020. "Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport," Applied Energy, Elsevier, vol. 259(C).
    5. Farahani, Samira S. & Bleeker, Cliff & van Wijk, Ad & Lukszo, Zofia, 2020. "Hydrogen-based integrated energy and mobility system for a real-life office environment," Applied Energy, Elsevier, vol. 264(C).
    6. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    7. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    8. Lux, Benjamin & Pfluger, Benjamin, 2020. "A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050," Applied Energy, Elsevier, vol. 269(C).
    9. Cao, Sunliang & Alanne, Kari, 2015. "Technical feasibility of a hybrid on-site H2 and renewable energy system for a zero-energy building with a H2 vehicle," Applied Energy, Elsevier, vol. 158(C), pages 568-583.
    10. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    11. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Polverino, Pierpaolo & Bove, Giovanni & Sorrentino, Marco & Pianese, Cesare & Beretta, Davide, 2019. "Advancements on scaling-up simulation of Proton Exchange Membrane Fuel Cells impedance through Buckingham Pi theorem," Applied Energy, Elsevier, vol. 249(C), pages 245-252.
    13. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    14. Felgenhauer, Markus F. & Pellow, Matthew A. & Benson, Sally M. & Hamacher, Thomas, 2016. "Evaluating co-benefits of battery and fuel cell vehicles in a community in California," Energy, Elsevier, vol. 114(C), pages 360-368.
    15. Pyrgou, Andri & Kylili, Angeliki & Fokaides, Paris A., 2016. "The future of the Feed-in Tariff (FiT) scheme in Europe: The case of photovoltaics," Energy Policy, Elsevier, vol. 95(C), pages 94-102.
    16. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    17. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage," Applied Energy, Elsevier, vol. 298(C).
    18. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).
    19. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2022. "A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications," Applied Energy, Elsevier, vol. 317(C).
    2. Zhou, Yuekuan, 2022. "Incentivising multi-stakeholders’ proactivity and market vitality for spatiotemporal microgrids in Guangzhou-Shenzhen-Hong Kong Bay Area," Applied Energy, Elsevier, vol. 328(C).
    3. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    4. Huang, Weifeng & Niu, Tong & Zhang, Caizhi & Fu, Zuhang & Zhang, Yuqi & Zhou, Weijiang & Pan, Zehua & Zhang, Kaiqing, 2023. "Experimental study of the performance degradation of proton exchange membrane fuel cell based on a multi-module stack under selected load profiles by clustering algorithm," Energy, Elsevier, vol. 270(C).
    5. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Anselma, Pier Giuseppe & Belingardi, Giovanni, 2022. "Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing," Applied Energy, Elsevier, vol. 321(C).
    7. Paul Grunow, 2022. "Decentral Hydrogen," Energies, MDPI, vol. 15(8), pages 1-15, April.
    8. He, Yingdong & Zhou, Yuekuan & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2022. "An inter-city energy migration framework for regional energy balance through daily commuting fuel-cell vehicles," Applied Energy, Elsevier, vol. 324(C).
    9. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2022. "Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose," Energy, Elsevier, vol. 260(C).
    10. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis," Applied Energy, Elsevier, vol. 321(C).
    11. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    12. Kang, Zhenye & Wang, Hao & Liu, Yanrong & Mo, Jingke & Wang, Min & Li, Jing & Tian, Xinlong, 2022. "Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices," Applied Energy, Elsevier, vol. 317(C).
    13. Zheng, Siqian & Jin, Xin & Huang, Gongsheng & Lai, Alvin CK., 2022. "Coordination of commercial prosumers with distributed demand-side flexibility in energy sharing and management system," Energy, Elsevier, vol. 248(C).
    14. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    2. He, Yingdong & Zhou, Yuekuan & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2022. "An inter-city energy migration framework for regional energy balance through daily commuting fuel-cell vehicles," Applied Energy, Elsevier, vol. 324(C).
    3. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis," Applied Energy, Elsevier, vol. 321(C).
    4. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage," Applied Energy, Elsevier, vol. 298(C).
    5. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Uncertainty energy planning of net-zero energy communities with peer-to-peer energy trading and green vehicle storage considering climate changes by 2050 with machine learning methods," Applied Energy, Elsevier, vol. 321(C).
    6. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    7. Zhou, Yuekuan, 2023. "A dynamic self-learning grid-responsive strategy for battery sharing economy—multi-objective optimisation and posteriori multi-criteria decision making," Energy, Elsevier, vol. 266(C).
    8. Liu, Jia & Ma, Tao & Wu, Huijun & Yang, Hongxing, 2023. "Study on optimum energy fuel mix for urban cities integrated with pumped hydro storage and green vehicles," Applied Energy, Elsevier, vol. 331(C).
    9. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).
    10. Zhou, Yuekuan, 2022. "A regression learner-based approach for battery cycling ageing prediction―advances in energy management strategy and techno-economic analysis," Energy, Elsevier, vol. 256(C).
    11. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Wang, Bingzheng & Yu, Xiaoli & Xu, Hongming & Wu, Qian & Wang, Lei & Huang, Rui & Li, Zhi & Zhou, Quan, 2022. "Scenario analysis, management, and optimization of a new Vehicle-to-Micro-Grid (V2μG) network based on off-grid renewable building energy systems," Applied Energy, Elsevier, vol. 325(C).
    13. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    14. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    15. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).
    16. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    17. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Mottaghizadeh, Pegah & Jabbari, Faryar & Brouwer, Jack, 2022. "Integrated solid oxide fuel cell, solar PV, and battery storage system to achieve zero net energy residential nanogrid in California," Applied Energy, Elsevier, vol. 323(C).
    19. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Jin-Li Hu & Min-Yueh Chuang, 2023. "The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy," Energies, MDPI, vol. 16(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921008345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.