IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922011394.html
   My bibliography  Save this article

Scenario analysis, management, and optimization of a new Vehicle-to-Micro-Grid (V2μG) network based on off-grid renewable building energy systems

Author

Listed:
  • Wang, Bingzheng
  • Yu, Xiaoli
  • Xu, Hongming
  • Wu, Qian
  • Wang, Lei
  • Huang, Rui
  • Li, Zhi
  • Zhou, Quan

Abstract

To fully exploit the potential of decarburization in the transport sector (e.g., electric vehicles (EV)) and energy sector (e.g., building energy system), this paper proposes a new concept of ‘Vehicle-to-Micro-Grid (V2μG) network’ that incorporates the off-grid building energy system with flexible power storage/supply provided by battery EVs (BEVs) and fuel cell EVs (FCEVs). The work is conducted with three main contributions: 1) a rule-based energy management strategy is proposed to study the impact of the V2μG interactions on the EV battery degradation; 2) a scenario analysis based on four working modes is conducted to evaluate the energy efficiency, costing, environmental impacts, and component ageing of the proposed V2μG network; 3) the optimum settings for system configuration, capacity, and operation strategy of the V2μG network are obtained by the NSGA-II algorithm. The study suggested that the degradation of lithium-ion batteries in BEV can be reduced by 13% compared to the network without FCEVs. In a community with 160 households and 200 EVs, the optimal V2μG network can reduce carbon dioxide emissions by 515.56 tons annually compared to the conventional off-grid building energy system powered by internal combustion engines.

Suggested Citation

  • Wang, Bingzheng & Yu, Xiaoli & Xu, Hongming & Wu, Qian & Wang, Lei & Huang, Rui & Li, Zhi & Zhou, Quan, 2022. "Scenario analysis, management, and optimization of a new Vehicle-to-Micro-Grid (V2μG) network based on off-grid renewable building energy systems," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011394
    DOI: 10.1016/j.apenergy.2022.119873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
    2. Zhou, Quan & Li, Yanfei & Zhao, Dezong & Li, Ji & Williams, Huw & Xu, Hongming & Yan, Fuwu, 2022. "Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression," Applied Energy, Elsevier, vol. 305(C).
    3. Chang, Jinwei & Li, Zhi & Huang, Yan & Yu, Xiaonan & Jiang, Ruicheng & Huang, Rui & Yu, Xiaoli, 2022. "Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm," Energy, Elsevier, vol. 239(PE).
    4. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    5. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    6. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Tran, Martino & Banister, David & McCulloch, Malcolm D., 2013. "Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV," Applied Energy, Elsevier, vol. 111(C), pages 206-218.
    7. Farahani, Samira S. & Bleeker, Cliff & van Wijk, Ad & Lukszo, Zofia, 2020. "Hydrogen-based integrated energy and mobility system for a real-life office environment," Applied Energy, Elsevier, vol. 264(C).
    8. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    9. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    10. Zhou, Quan & Li, Ji & Shuai, Bin & Williams, Huw & He, Yinglong & Li, Ziyang & Xu, Hongming & Yan, Fuwu, 2019. "Multi-step reinforcement learning for model-free predictive energy management of an electrified off-highway vehicle," Applied Energy, Elsevier, vol. 255(C).
    11. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    12. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    13. Teymoori Hamzehkolaei, Fatemeh & Amjady, Nima, 2018. "A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units," Renewable Energy, Elsevier, vol. 118(C), pages 602-614.
    14. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Ji, Haoran & Chen, Sirui & Yu, Hao & Li, Peng & Yan, Jinyue & Song, Jieying & Wang, Chengshan, 2022. "Robust operation for minimizing power consumption of data centers with flexible substation integration," Energy, Elsevier, vol. 248(C).
    16. Michael Child & Alexander Nordling & Christian Breyer, 2018. "The Impacts of High V2G Participation in a 100% Renewable Åland Energy System," Energies, MDPI, vol. 11(9), pages 1-19, August.
    17. Marongiu, Andrea & Roscher, Marco & Sauer, Dirk Uwe, 2015. "Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles," Applied Energy, Elsevier, vol. 137(C), pages 899-912.
    18. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    19. Bai, Zhang & Liu, Taixiu & Liu, Qibin & Lei, Jing & Gong, Liang & Jin, Hongguang, 2018. "Performance investigation of a new cooling, heating and power system with methanol decomposition based chemical recuperation process," Applied Energy, Elsevier, vol. 229(C), pages 1152-1163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yannick Pohlmann & Carl-Friedrich Klinck, 2023. "Techno-Economic Potential of V2B in a Neighborhood, Considering Tariff Models and Battery Cycle Limits," Energies, MDPI, vol. 16(11), pages 1-24, May.
    2. Yonghong Xu & Cheng Li & Xu Wang & Hongguang Zhang & Fubin Yang & Lili Ma & Yan Wang, 2022. "Joint Estimation Method with Multi-Innovation Unscented Kalman Filter Based on Fractional-Order Model for State of Charge and State of Health Estimation," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    3. Zhuxian Liu & Zhong Wu & Yonghong Xu & Hongguang Zhang & Jian Zhang & Fubin Yang, 2022. "Performance Investigation of Single–Piston Free Piston Expander–Linear Generator with Multi–Parameter Based on Simulation Model," Energies, MDPI, vol. 15(23), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Zepeng & Wang, Jiangjiang & Cui, Zhiheng & Lu, Chunyan & Qi, Xiaoling, 2021. "Multi-objective optimization and exergoeconomic analysis for a novel full-spectrum solar-assisted methanol combined cooling, heating, and power system," Energy, Elsevier, vol. 237(C).
    2. He, Yingdong & Zhou, Yuekuan & Wang, Zhe & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2021. "Quantification on fuel cell degradation and techno-economic analysis of a hydrogen-based grid-interactive residential energy sharing network with fuel-cell-powered vehicles," Applied Energy, Elsevier, vol. 303(C).
    3. Yuan, Yu & Bai, Zhang & Liu, Qibin & Hu, Wenxin & Zheng, Bo, 2021. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Route of enhancing the operation flexibility," Applied Energy, Elsevier, vol. 301(C).
    4. Petit, Martin & Prada, Eric & Sauvant-Moynot, Valérie, 2016. "Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime," Applied Energy, Elsevier, vol. 172(C), pages 398-407.
    5. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    6. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    8. Chen, Ruihu & Yang, Chao & Ma, Yue & Wang, Weida & Wang, Muyao & Du, Xuelong, 2022. "Online learning predictive power coordinated control strategy for off-road hybrid electric vehicles considering the dynamic response of engine generator set," Applied Energy, Elsevier, vol. 323(C).
    9. Wang, Jiangjiang & Liu, Yi & Ren, Fukang & Lu, Shuaikang, 2020. "Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility," Energy, Elsevier, vol. 197(C).
    10. George Baure & Matthieu Dubarry, 2020. "Durability and Reliability of EV Batteries under Electric Utility Grid Operations: Impact of Frequency Regulation Usage on Cell Degradation," Energies, MDPI, vol. 13(10), pages 1-11, May.
    11. Liu, Jia & Ma, Tao & Wu, Huijun & Yang, Hongxing, 2023. "Study on optimum energy fuel mix for urban cities integrated with pumped hydro storage and green vehicles," Applied Energy, Elsevier, vol. 331(C).
    12. Zhang, Xiaofeng & Yan, Renshi & Zeng, Rong & Zhu, Ruilin & Kong, Xiaoying & He, Yecong & Li, Hongqiang, 2022. "Integrated performance optimization of a biomass-based hybrid hydrogen/thermal energy storage system for building and hydrogen vehicles," Renewable Energy, Elsevier, vol. 187(C), pages 801-818.
    13. Hua, Min & Zhang, Cetengfei & Zhang, Fanggang & Li, Zhi & Yu, Xiaoli & Xu, Hongming & Zhou, Quan, 2023. "Energy management of multi-mode plug-in hybrid electric vehicle using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 348(C).
    14. Gao, Dian-ce & Sun, Yongjun & Zhang, Xingxing & Huang, Pei & Yelin Zhang,, 2022. "A GA-based NZEB-cluster planning and design optimization method for mitigating grid overvoltage risk," Energy, Elsevier, vol. 243(C).
    15. Fernandes, A. & Woudstra, T. & van Wijk, A. & Verhoef, L. & Aravind, P.V., 2016. "Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs," Applied Energy, Elsevier, vol. 173(C), pages 13-28.
    16. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    17. Qiu, Dawei & Wang, Yi & Sun, Mingyang & Strbac, Goran, 2022. "Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 313(C).
    18. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Guo, Jiacheng & Liu, Zhijian & Wu, Xuan & Wu, Di & Zhang, Shicong & Yang, Xinyan & Ge, Hua & Zhang, Peiwen, 2022. "Two-layer co-optimization method for a distributed energy system combining multiple energy storages," Applied Energy, Elsevier, vol. 322(C).
    20. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Uncertainty energy planning of net-zero energy communities with peer-to-peer energy trading and green vehicle storage considering climate changes by 2050 with machine learning methods," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.