IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v300y2021ics0306261921008096.html
   My bibliography  Save this article

Long term performance analysis of low concentrating photovoltaic (LCPV) systems for building retrofit

Author

Listed:
  • Parupudi, Ranga Vihari
  • Singh, Harjit
  • Kolokotroni, Maria
  • Tavares, Jose

Abstract

Low concentrating photovoltaic (LCPV) systems offer viable solution for generating higher energy output per unit cell area compared to a typical flat PV panel, making them potential candidates for building retrofit. However, the best LCPV geometry for a given location is yet to be identified. The current study investigates the technical, economic and environmental feasibility of three geometrically equivalent LCPV designs installed at a building within Brunel University London (UK). The studied LCPV systems comprised of Asymmetric Compound Parabolic Concentrating (ACPC), Compound Parabolic Concentrating (CPC) and V-Trough optical concentrators with the post-truncation geometric concentration ratios of 1.53, 1.46, 1.40 respectively. The performances of the prototypes have been monitored every 15 min over 10 months and analyzed on hourly, daily, and monthly basis. Performance parameters such as reference yield, array yield, performance ratio, electrical conversion efficiency and the generated energy output per unit area have been derived and presented. Payback periods have been estimated in two separate scenarios. Measurements have showed that the ACPC integrated LCPV achieved the highest annual optical efficiency generating the highest amount of electrical energy per unit cell area of 246.2 kWh/m2 compared to CPC-LCPV, V-Trough-LCPV and conventional flat modules which produced 224.6 kWh/m2, 196.1 kWh/m2 and 185.4 kWh/m2 respectively. One particular conclusion of the study is that the ACPC based LCPVs perform better in locations where diffuse component of solar radiation is predominant as in the case of the UK. Consequently, ACPC based LCPV modules are recommended for the building retrofit in such locations.

Suggested Citation

  • Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria & Tavares, Jose, 2021. "Long term performance analysis of low concentrating photovoltaic (LCPV) systems for building retrofit," Applied Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008096
    DOI: 10.1016/j.apenergy.2021.117412
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    2. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Wittkopf, Stephen & Valliappan, Selvam & Liu, Lingyun & Ang, Kian Seng & Cheng, Seng Chye Jonathan, 2012. "Analytical performance monitoring of a 142.5kWp grid-connected rooftop BIPV system in Singapore," Renewable Energy, Elsevier, vol. 47(C), pages 9-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pramanik, Anurag & Singh, Harjit & Chandra, Ram & Vijay, Virendra Kumar & Suresh, S., 2022. "Amorphous carbon based nanofluids for direct radiative absorption in solar thermal concentrators – Experimental and computational study," Renewable Energy, Elsevier, vol. 183(C), pages 651-661.
    2. Karimzadeh Kolamroudi, Mohammad & Ilkan, Mustafa & Egelioglu, Fuat & Safaei, Babak, 2022. "Maximization of the output power of low concentrating photovoltaic systems by the application of reflecting mirrors," Renewable Energy, Elsevier, vol. 189(C), pages 822-835.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Jae Bum & Park, Jae Wan & Yoon, Jong Ho & Baek, Nam Choon & Kim, Dai Kon & Shin, U. Cheul, 2014. "An empirical study of performance characteristics of BIPV (Building Integrated Photovoltaic) system for the realization of zero energy building," Energy, Elsevier, vol. 66(C), pages 25-34.
    2. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    3. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. David Redpath & Anshul Paneri & Harjit Singh & Ahmed Ghitas & Mohamed Sabry, 2022. "Design of a Building-Scale Space Solar Cooling System Using TRNSYS," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    5. Sheng-Yuan Wang & Kyung-Tae Lee & Ju-Hyung Kim, 2022. "Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game," Sustainability, MDPI, vol. 14(13), pages 1-32, June.
    6. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    7. Pagliaro, Francesca & Hugony, Francesca & Zanghirella, Fabio & Basili, Rossano & Misceo, Monica & Colasuonno, Luca & Del Fatto, Vincenzo, 2021. "Assessing building energy performance and energy policy impact through the combined analysis of EPC data – The Italian case study of SIAPE," Energy Policy, Elsevier, vol. 159(C).
    8. Paúl Espinoza-Zambrano & Carlos Marmolejo-Duarte & Alejandra García-Hooghuis, 2023. "Libro del Edificio Electrónico (LdE-e): Advancing towards a Comprehensive Tool for the Management and Renovation of Multifamily Buildings in Spain," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    9. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    10. Vangelis Marinakis, 2020. "Big Data for Energy Management and Energy-Efficient Buildings," Energies, MDPI, vol. 13(7), pages 1-18, March.
    11. Minyoung Kwon & Erwin Mlecnik & Vincent Gruis, 2021. "Business Model Development for Temporary Home Renovation Consultancy Centres: Experiences from European Pop-Ups," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    12. Irini Barbero & Yacine Rezgui & Ioan Petri, 2023. "A European-wide exploratory study to analyse the relationship between training and energy efficiency in the construction sector," Environment Systems and Decisions, Springer, vol. 43(3), pages 337-357, September.
    13. Rafaela Bortolini & Raul Rodrigues & Hamidreza Alavi & Luisa Felix Dalla Vecchia & Núria Forcada, 2022. "Digital Twins’ Applications for Building Energy Efficiency: A Review," Energies, MDPI, vol. 15(19), pages 1-17, September.
    14. Daher, Daha Hassan & Gaillard, Léon & Amara, Mohamed & Ménézo, Christophe, 2018. "Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant," Renewable Energy, Elsevier, vol. 125(C), pages 729-737.
    15. Dellicompagni, Pablo Roberto & Heim, Dariusz & Knera, Dominika & Krempski-Smejda, Michał, 2022. "A combined thermal and electrical performance evaluation of low concentration photovoltaic systems," Energy, Elsevier, vol. 254(PA).
    16. Marvuglia, Antonino & Havinga, Lisanne & Heidrich, Oliver & Fonseca, Jimeno & Gaitani, Niki & Reckien, Diana, 2020. "Advances and challenges in assessing urban sustainability: an advanced bibliometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    17. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    18. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    19. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.
    20. Karel Struhala & Milan Ostrý, 2021. "Life-Cycle Assessment of a Rural Terraced House: A Struggle with Sustainability of Building Renovations," Energies, MDPI, vol. 14(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.