IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11549-d915320.html
   My bibliography  Save this article

Design of a Building-Scale Space Solar Cooling System Using TRNSYS

Author

Listed:
  • David Redpath

    (School of Chemistry and Chemical Engineering, Queen’s University of Belfast, University Road, Belfast BT7 1NN, UK
    College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK)

  • Anshul Paneri

    (College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK)

  • Harjit Singh

    (College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK)

  • Ahmed Ghitas

    (Photovoltaic Unit, Solar Energy Physics Laboratory, National Research Institute of Astronomy and Geophysics, Helwan 11421, Egypt)

  • Mohamed Sabry

    (Photovoltaic Unit, Solar Energy Physics Laboratory, National Research Institute of Astronomy and Geophysics, Helwan 11421, Egypt
    Physics Department, College of Applied Science, Umm Al Qura University, Mecca 21955, Saudi Arabia)

Abstract

Research into solar absorption chillers despite their environmental benefits has been limited to date to mainly larger systems whilst ignoring smaller building-scale units, which can significantly benefit from the use of optimally designed, low concentrating, non-imaging optical reflectors. A solar absorption chiller system designed to provide year-round space cooling for a typical primary health care facility in Cairo, Egypt, was designed to match local ambient, solar, and occupancy conditions, its performance simulated and then optimized to minimize auxiliary power consumption using the TRNSYS18 software, TRNOPT. Different configurations of collector types, array areas, storage sizes and collector slopes were used to determine the optimum specifications for the system components. Non-concentrating Evacuated Tube Collectors (ETCs) were compared with the same Evacuated Tube Collectors but integrated with external Compound Parabolic Concentrators (CPCs) with a geometric concentration ratio of 1.5X for supplying thermal energy to the single-effect absorption chiller investigated. This paper describes a user-friendly methodology developed for the design of solar heat-powered absorption chillers for small buildings using TRNSYS18 employing the Hookes–Jeeves algorithm within the TRNOPT function. Clear steps to avoid convergence problems when using TRNSYS are articulated to make repeatability for different systems and locations more straightforward. Collector array areas were varied from 30 m 2 to 160 m 2 and the size of the water-based thermal storage from 1 m 3 to 3 m 3 to determine the configuration that can supply the maximum solar fraction of the building’s cooling requirements for the lowest lifetime cost. The optimum solar fraction for ETCs and CPCs was found to be 0.66 and 0.94, respectively. If the current air conditioning demand is met through adoption of the CPC-based solar absorption systems this can potentially save the emission of 3,966,247 tCO 2 per annum.

Suggested Citation

  • David Redpath & Anshul Paneri & Harjit Singh & Ahmed Ghitas & Mohamed Sabry, 2022. "Design of a Building-Scale Space Solar Cooling System Using TRNSYS," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11549-:d:915320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11549/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11549/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    2. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland, 2018. "Non-tracking East-West XCPC solar thermal collector for 200 celsius applications," Applied Energy, Elsevier, vol. 216(C), pages 521-533.
    3. Xu, Z.Y. & Wang, R.Z., 2017. "Simulation of solar cooling system based on variable effect LiBr-water absorption chiller," Renewable Energy, Elsevier, vol. 113(C), pages 907-914.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evangelos Bellos & Dimitrios N. Korres & Christos Tzivanidis, 2023. "Investigation of a Compound Parabolic Collector with a Flat Glazing," Sustainability, MDPI, vol. 15(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javed Akhter & Syed I. Gilani & Hussain H. Al-Kayiem & Muzaffar Ali, 2019. "Optical Performance Analysis of Single Flow Through and Concentric Tube Receiver Coupled with a Modified CPC Collector Under Different Configurations," Energies, MDPI, vol. 12(21), pages 1-24, October.
    2. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    3. Dellicompagni, Pablo Roberto & Heim, Dariusz & Knera, Dominika & Krempski-Smejda, Michał, 2022. "A combined thermal and electrical performance evaluation of low concentration photovoltaic systems," Energy, Elsevier, vol. 254(PA).
    4. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    5. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    6. Xu, Shijie & Zhu, Qunzhi & Hu, Yan & Zhang, Tao, 2022. "Design and performance research of a new non-tracking low concentrating with lens for photovoltaic systems," Renewable Energy, Elsevier, vol. 192(C), pages 174-187.
    7. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2018. "Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions," Applied Energy, Elsevier, vol. 231(C), pages 1132-1145.
    8. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
    9. Bhusal, Yogesh & Hassanzadeh, Ali & Jiang, Lun & Winston, Roland, 2020. "Technical and economic analysis of a novel low-cost concentrated medium-temperature solar collector," Renewable Energy, Elsevier, vol. 146(C), pages 968-985.
    10. Harry Apostoleris & Marco Stefancich & Matteo Chiesa, 2021. "The CPV “Toolbox”: New Approaches to Maximizing Solar Resource Utilization with Application-Oriented Concentrator Photovoltaics," Energies, MDPI, vol. 14(4), pages 1-15, February.
    11. Gui, Qinghua & Chen, Fei & Liu, Yang & Luo, Huilong, 2023. "Preliminary study on photo-thermal conversion investigation of compound parabolic concentrator for eliminate light escape in vacuum tube interlayer," Energy, Elsevier, vol. 271(C).
    12. Yilmaz, Ceyhun, 2018. "A case study: Exergoeconomic analysis and genetic algorithm optimization of performance of a hydrogen liquefaction cycle assisted by geothermal absorption precooling cycle," Renewable Energy, Elsevier, vol. 128(PA), pages 68-80.
    13. Pramanik, Anurag & Singh, Harjit & Chandra, Ram & Vijay, Virendra Kumar & Suresh, S., 2022. "Amorphous carbon based nanofluids for direct radiative absorption in solar thermal concentrators – Experimental and computational study," Renewable Energy, Elsevier, vol. 183(C), pages 651-661.
    14. Xu, Shi-Jie & Wu, Shuang-Ying & Xiao, Lan & Chen, Zhi-Li, 2023. "Performance assessment of compound parabolic concentrating photovoltaic system based on optical-thermal-electrical-environmental coupling," Energy, Elsevier, vol. 284(C).
    15. Osório, T. & Horta, P. & Marchã, J. & Collares-Pereira, M., 2019. "One-Sun CPC-type solar collectors with evacuated tubular receivers," Renewable Energy, Elsevier, vol. 134(C), pages 247-257.
    16. Xia, En-Tong & Chen, Fei, 2020. "Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator," Renewable Energy, Elsevier, vol. 153(C), pages 155-167.
    17. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria & Tavares, Jose, 2021. "Long term performance analysis of low concentrating photovoltaic (LCPV) systems for building retrofit," Applied Energy, Elsevier, vol. 300(C).
    18. Antoniadis, Christodoulos N. & Martinopoulos, Georgios, 2019. "Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS," Renewable Energy, Elsevier, vol. 137(C), pages 56-66.
    19. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
    20. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11549-:d:915320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.