IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v269y2020ics0306261920306280.html
   My bibliography  Save this article

Optimal allocation of energy storage and solar photovoltaic systems with residential demand scheduling

Author

Listed:
  • Lim, Kai Zhuo
  • Lim, Kang Hui
  • Wee, Xian Bin
  • Li, Yinan
  • Wang, Xiaonan

Abstract

Improvements to the current generation and distribution of electricity via demand side management (DSM) and storage systems are prevalent facing increasing energy demand and environmental implications of electricity generation. In this paper, a multi-level optimization model, which incorporates energy demand scheduler (DS), energy storage (ES) and solar photovoltaic (PV) panels amongst households, was developed so as to lower the peak-to-average ratio (PAR) of energy demand and reduce electricity bills. This model consists of three levels: (1) household consumption optimization (solo opt) using convex programming, (2) grid consumption optimization (base opt) via a game-theoretic framework, and (3) ES/PV allocation optimization using genetic algorithm (GA opt). This framework searches for the optimal allocation of ES/PV in a heterogeneous residential population subdivided into consumer groups by household sizes and income levels. A case study was performed with model parameters determined by referencing state-averaged electricity bills and electricity usage data from Texas, US. The results showed that GA opt can achieve bills savings of ~11% and a PAR reduction from 1.53 to 1.30 by allocating a non-trivial optimal combination of ES/PVs to the households. Another GA opt approach was adopted by minimizing PAR and found that PAR can be effectively reduced from 1.53 to 1.00 with bills savings of ~4%. Most significantly, it was observed that the optimal allocation differs from the free market equilibrium due to positive externalities and synergies when combining DSM together with ES/PVs.

Suggested Citation

  • Lim, Kai Zhuo & Lim, Kang Hui & Wee, Xian Bin & Li, Yinan & Wang, Xiaonan, 2020. "Optimal allocation of energy storage and solar photovoltaic systems with residential demand scheduling," Applied Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306280
    DOI: 10.1016/j.apenergy.2020.115116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    2. Comello, Stephen & Reichelstein, Stefan J. & Sahoo, Anshuman, 2018. "The Road ahead for Solar PV Power," Research Papers 3620, Stanford University, Graduate School of Business.
    3. Wang, Xiaonan & El-Farra, Nael H. & Palazoglu, Ahmet, 2017. "Optimal scheduling of demand responsive industrial production with hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 100(C), pages 53-64.
    4. Kenneth W Clements & Jiawei Si & Eliyathamby A. Selvanathan & Saroja Selvanathan, 2020. "Demand elasticities for 9 goods in 37 countries," Applied Economics, Taylor & Francis Journals, vol. 52(24), pages 2636-2655, May.
    5. Grandjean, A. & Adnot, J. & Binet, G., 2012. "A review and an analysis of the residential electric load curve models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6539-6565.
    6. Fatih Issi & Orhan Kaplan, 2018. "The Determination of Load Profiles and Power Consumptions of Home Appliances," Energies, MDPI, vol. 11(3), pages 1-18, March.
    7. Valenzuela, Carlos & Valencia, Alelhie & White, Steve & Jordan, Jeffrey A. & Cano, Stephanie & Keating, Jerome & Nagorski, John & Potter, Lloyd B., 2014. "An analysis of monthly household energy consumption among single-family residences in Texas, 2010," Energy Policy, Elsevier, vol. 69(C), pages 263-272.
    8. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    9. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.
    10. Comello, Stephen & Reichelstein, Stefan & Sahoo, Anshuman, 2018. "The road ahead for solar PV power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 744-756.
    11. Alham, M.H. & Elshahed, M. & Ibrahim, Doaa Khalil & Abo El Zahab, Essam El Din, 2016. "A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management," Renewable Energy, Elsevier, vol. 96(PA), pages 800-811.
    12. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2018. "Residential versus communal combination of photovoltaic and battery in smart energy systems," Energy, Elsevier, vol. 152(C), pages 466-475.
    13. Reka, S. Sofana & Dragicevic, Tomislav, 2018. "Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 90-108.
    14. Kayode Olaniyan & Benjamin C. McLellan & Seiichi Ogata & Tetsuo Tezuka, 2018. "Estimating Residential Electricity Consumption in Nigeria to Support Energy Transitions," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    15. Matthias Pilz & Omar Ellabban & Luluwah Al-Fagih, 2019. "On Optimal Battery Sizing for Households Participating in Demand-Side Management Schemes," Energies, MDPI, vol. 12(18), pages 1-12, September.
    16. Darghouth, Naïm R. & Wiser, Ryan H. & Barbose, Galen & Mills, Andrew D., 2016. "Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment," Applied Energy, Elsevier, vol. 162(C), pages 713-722.
    17. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    18. Motalleb, Mahdi & Reihani, Ehsan & Ghorbani, Reza, 2016. "Optimal placement and sizing of the storage supporting transmission and distribution networks," Renewable Energy, Elsevier, vol. 94(C), pages 651-659.
    19. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Mingfei & Han, Zhonghe & Zhang, Ce & Li, Peng & Wu, Di & Li, Peng, 2023. "Optimal configuration for regional integrated energy systems with multi-element hybrid energy storage," Energy, Elsevier, vol. 277(C).
    2. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    3. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Maximiliano Lainfiesta Herrera & Hassan S. Hayajneh & Xuewei Zhang, 2021. "DC Communities: Transformative Building Blocks of the Emerging Energy Infrastructure," Energies, MDPI, vol. 14(22), pages 1-8, November.
    3. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    5. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    6. Teresa Pakulska, 2021. "Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development," Energies, MDPI, vol. 14(4), pages 1-19, February.
    7. Victor Vega-Garita & Muhammad Faizal Sofyan & Nishant Narayan & Laura Ramirez-Elizondo & Pavol Bauer, 2018. "Energy Management System for the Photovoltaic Battery Integrated Module," Energies, MDPI, vol. 11(12), pages 1-20, December.
    8. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Li, Jianhui & Zhang, Wei & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhao, Oufan & Zhong, Jianmei & Zeng, Xiding, 2022. "A hybrid photovoltaic and water/air based thermal(PVT) solar energy collector with integrated PCM for building application," Renewable Energy, Elsevier, vol. 199(C), pages 662-671.
    10. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    11. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," Energy Policy, Elsevier, vol. 152(C).
    12. Kovač, Marko & Stegnar, Gašper & Al-Mansour, Fouad & Merše, Stane & Pečjak, Andrej, 2019. "Assessing solar potential and battery instalment for self-sufficient buildings with simplified model," Energy, Elsevier, vol. 173(C), pages 1182-1195.
    13. Lopez, Hector K. & Zilouchian, Ali, 2023. "Peer-to-peer energy trading for photo-voltaic prosumers," Energy, Elsevier, vol. 263(PA).
    14. Hortay, Olivér & Rozner, Bence Péter, 2019. "Allocating renewable subsidies," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 236-247.
    15. Castagneto Gissey, Giorgio & Zakeri, Behnam & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Evaluating consumer investments in distributed energy technologies," Energy Policy, Elsevier, vol. 149(C).
    16. Zhang, M.M. & Zhang, C. & Liu, L.Y. & Zhou, D.Q., 2020. "Is it time to launch grid parity in the Chinese solar photovoltaic industry? Evidence from 335 cities," Energy Policy, Elsevier, vol. 147(C).
    17. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    18. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2019. "Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney," Energy, Elsevier, vol. 175(C), pages 505-514.
    19. Andrea Cabanero & Lars Nolting & Aaron Praktiknjo, 2020. "Mini-Grids for the Sustainable Electrification of Rural Areas in Sub-Saharan Africa: Assessing the Potential of KeyMaker Models," Energies, MDPI, vol. 13(23), pages 1-31, December.
    20. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.