IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318653.html
   My bibliography  Save this article

Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution

Author

Listed:
  • Yang, Shiliang
  • Zhou, Tao
  • Wei, Yonggang
  • Hu, Jianhang
  • Wang, Hua

Abstract

In-depth understanding of the dynamical and thermal property of bubbles is required to elucidate the phenomena occurring in a bubbling fluidized gasifier. In this work, numerical simulation is conducted for the biomass gasification in a three-dimensional bubbling fluidized bed through the multiphase particle-in-cell method. After validating the numerical results with experimental data, the impact of particle size distribution of sand material on the dynamical property (i.e., the rising velocity, spatial distribution, volume) combined with the thermal property (i.e., gas species, temperature, pressure, density, thermal conductivity) of the rising bubbles in the system are explored. The results demonstrate that large bubbles have a high mass fraction of combustible gases. Along the bed height, the bubble temperature, specific heat and thermal conductivity continuously increase while the density and pressure decrease. Compared with the boundary, the bubble interior has a higher temperature, smaller density, and more combustible gases. Enlarging the particle size distribution width increases the bubble volume, aspect ratio, mass fraction of combustible gas in the lower part of the bed, temperature and the thermal conductivity of bubbles, but decreases the rising velocity, density and pressure of the rising bubbles. The results obtained provide a new perspective regarding the effect of particle size distribution on the bubble property especially the first report regarding the thermal property of the rising bubbles in the bubbling fluidized gasifier, which will be beneficial for the in-depth understanding for the fundamental aspects and also the practical operation for this kind of apparatus.

Suggested Citation

  • Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318653
    DOI: 10.1016/j.apenergy.2019.114178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kulkarni, Avanti & Baker, Ryan & Abdoulmomine, Nourredine & Adhikari, Sushil & Bhavnani, Sushil, 2016. "Experimental study of torrefied pine as a gasification fuel using a bubbling fluidized bed gasifier," Renewable Energy, Elsevier, vol. 93(C), pages 460-468.
    2. Benedikt, Florian & Kuba, Matthias & Schmid, Johannes Christian & Müller, Stefan & Hofbauer, Hermann, 2019. "Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction," Applied Energy, Elsevier, vol. 238(C), pages 1138-1149.
    3. Déparrois, N. & Singh, P. & Burra, K.G. & Gupta, A.K., 2019. "Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2," Applied Energy, Elsevier, vol. 246(C), pages 1-10.
    4. Chen, Qin & Rosner, Fabian & Rao, Ashok & Samuelsen, Scott & Jayaraman, Ambal & Alptekin, Gokhan, 2019. "Simulation of elevated temperature solid sorbent CO2 capture for pre-combustion applications using computational fluid dynamics," Applied Energy, Elsevier, vol. 237(C), pages 314-325.
    5. Salmasi, A. & Shams, M. & Chernoray, V., 2018. "An experimental approach to thermochemical conversion of a fuel particle in a fluidized bed," Applied Energy, Elsevier, vol. 228(C), pages 524-534.
    6. Liu, Hui & Cattolica, Robert J. & Seiser, Reinhard & Liao, Chang-hsien, 2015. "Three-dimensional full-loop simulation of a dual fluidized-bed biomass gasifier," Applied Energy, Elsevier, vol. 160(C), pages 489-501.
    7. Kraft, Stephan & Kirnbauer, Friedrich & Hofbauer, Hermann, 2017. "CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8MW fuel input," Applied Energy, Elsevier, vol. 190(C), pages 408-420.
    8. Lu, Ding & Yoshikawa, Kunio & Ismail, Tamer M. & Abd El-Salam, M., 2018. "Assessment of the carbonized woody briquette gasification in an updraft fixed bed gasifier using the Euler-Euler model," Applied Energy, Elsevier, vol. 220(C), pages 70-86.
    9. Jeremiáš, M. & Pohořelý, M. & Svoboda, K. & Skoblia, S. & Beňo, Z. & Šyc, M., 2018. "CO2 gasification of biomass: The effect of lime concentration in a fluidised bed," Applied Energy, Elsevier, vol. 217(C), pages 361-368.
    10. Kuba, Matthias & Kraft, Stephan & Kirnbauer, Friedrich & Maierhans, Frank & Hofbauer, Hermann, 2018. "Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass," Applied Energy, Elsevier, vol. 210(C), pages 230-240.
    11. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "CFD study of the reactive gas-solid hydrodynamics in a large-scale catalytic methanol-to-olefin fluidized bed reactor," Energy, Elsevier, vol. 243(C).
    2. Yang, Shiliang & Wan, Zhanghao & Wang, Shuai & Wang, Hua, 2020. "Computational fluid study of radial and axial segregation characteristics in a dual fluidized bed reactor system," Energy, Elsevier, vol. 209(C).
    3. Yang, Shiliang & Fan, Feihu & Hu, Jianhang & Wang, Hua, 2020. "Particle-scale evaluation of the biomass steam-gasification process in a conical spouted bed gasifier," Renewable Energy, Elsevier, vol. 162(C), pages 844-860.
    4. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    5. Yang, Shiliang & Liang, Jin & Wang, Shuai & Wang, Hua, 2021. "High-fidelity investigation of thermochemical conversion of biomass material in a full-loop circulating fluidized bed gasifier," Energy, Elsevier, vol. 224(C).
    6. Sun, Haoran & Yang, Shiliang & Bao, Guirong & Hu, Jianhang & Wang, Hua, 2023. "Numerical evaluation of multi-scale properties in biomass fast pyrolysis in fountain confined conical spouted bed," Energy, Elsevier, vol. 283(C).
    7. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    8. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    2. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).
    3. Zhou, Tao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier," Renewable Energy, Elsevier, vol. 148(C), pages 534-547.
    4. Yang, Shiliang & Liang, Jin & Wang, Shuai & Wang, Hua, 2021. "High-fidelity investigation of thermochemical conversion of biomass material in a full-loop circulating fluidized bed gasifier," Energy, Elsevier, vol. 224(C).
    5. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    6. Gupta, Saurabh & Choudhary, Shikhar & Kumar, Suraj & De, Santanu, 2021. "Large eddy simulation of biomass gasification in a bubbling fluidized bed based on the multiphase particle-in-cell method," Renewable Energy, Elsevier, vol. 163(C), pages 1455-1466.
    7. Stanger, Lukas & Bartik, Alexander & Hammerschmid, Martin & Jankovic, Stefan & Benedikt, Florian & Müller, Stefan & Schirrer, Alexander & Jakubek, Stefan & Kozek, Martin, 2024. "Model predictive control of a dual fluidized bed gasification plant," Applied Energy, Elsevier, vol. 361(C).
    8. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    9. Adnan, Muflih A. & Azis, Muhammad Mufti & Quddus, Mohammad R. & Hossain, Mohammad M., 2018. "Integrated liquid fuel based chemical looping combustion – parametric study for efficient power generation and CO2 capture," Applied Energy, Elsevier, vol. 228(C), pages 2398-2406.
    10. Klimanek, Adam & Bigda, Joanna, 2018. "CFD modelling of CO2 enhanced gasification of coal in a pressurized circulating fluidized bed reactor," Energy, Elsevier, vol. 160(C), pages 710-719.
    11. Yang, Shiliang & Wan, Zhanghao & Wang, Shuai & Wang, Hua, 2020. "Computational fluid study of radial and axial segregation characteristics in a dual fluidized bed reactor system," Energy, Elsevier, vol. 209(C).
    12. Knutsson, Pavleta & Maric, Jelena & Knutsson, Jesper & Larsson, Anton & Breitholtz, Claes & Seemann, Martin, 2019. "Potassium speciation and distribution for the K2CO3 additive-induced activation/deactivation of olivine during gasification of woody biomass," Applied Energy, Elsevier, vol. 248(C), pages 538-544.
    13. Sun, Haoran & Bao, Guirong & Liu, Huili & Hu, Jianhang & Wang, Hua, 2024. "Particle-scale simulation of air-blown gasification of biomass materials in bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 220(C).
    14. Zachl, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Evaluation and extension of the load and fuel flexibility limits of a stratified downdraft gasifier," Energy, Elsevier, vol. 239(PD).
    15. Junjie Xue & Zhen Dong & Hao Chen & Mengyuan Zhang & Yufeng Zhao & Yanpeng Chen & Shanshan Chen, 2024. "Gasification of the Char Residues with High Ash Content by Carbon Dioxide," Energies, MDPI, vol. 17(17), pages 1-35, September.
    16. Sun, Haoran & Bao, Guirong & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Numerical study of the biomass gasification process in an industrial-scale dual fluidized bed gasifier with 8MWth input," Renewable Energy, Elsevier, vol. 211(C), pages 681-696.
    17. Fan, Feihu & Zheng, Min & Yang, Shiliang & Wang, Hua, 2021. "Numerical study of fluid dynamics and heat transfer property of dual fluidized bed gasifier," Energy, Elsevier, vol. 234(C).
    18. Porcu, Andrea & Xu, Yupeng & Mureddu, Mauro & Dessì, Federica & Shahnam, Mehrdad & Rogers, William A. & Sastri, Bhima S. & Pettinau, Alberto, 2021. "Experimental validation of a multiphase flow model of a lab-scale fluidized-bed gasification unit," Applied Energy, Elsevier, vol. 293(C).
    19. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    20. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.