IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222003991.html
   My bibliography  Save this article

Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed

Author

Listed:
  • Zhou, Mengmeng
  • Wang, Shuai
  • Luo, Kun
  • Fan, Jianren

Abstract

In this work, the co-firing of biomass and coal in an oxy-fuel bubbling fluidized bed combustor is numerically explored using a multiphase particle-in-cell reactive model. After model validation, the complex in-furnace phenomena and thermochemical properties are thoroughly studied. The results show that the lateral injection of solid fuels and secondary gas flow results in the non-uniform distributions of gas-solid fluxes and gas products. Segregation makes sand particles concentrate in the bottom region. Particle mass decreases axially, corresponding to the coal in the medium region and biomass in the upper region. Higher oxygen concentration leads to higher gas temperature and lower gas density attributed to the enhanced oxidation reactions. Elevating superficial gas velocity causes a lower gas temperature, higher gas density, lower CO2 and H2O concentrations because of the reduced residence time of gas-solid flow. A larger portion of primary gas flow causes the reduced O2 concentration, increased H2O concentration, but unchanged CO2 concentration in the lower region.

Suggested Citation

  • Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003991
    DOI: 10.1016/j.energy.2022.123496
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riaza, J. & Gil, M.V. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion of coal and biomass blends," Energy, Elsevier, vol. 41(1), pages 429-435.
    2. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
    3. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    4. Zhao, Tian & Liu, Zhixin, 2019. "A novel analysis of carbon capture and storage (CCS) technology adoption: An evolutionary game model between stakeholders," Energy, Elsevier, vol. 189(C).
    5. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "Numerical analysis of wood air gasification in a bubbling fluidized gasifier with reactive charcoal as bed material," Renewable Energy, Elsevier, vol. 188(C), pages 282-298.
    6. Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
    7. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    8. Kraft, Stephan & Kirnbauer, Friedrich & Hofbauer, Hermann, 2017. "CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8MW fuel input," Applied Energy, Elsevier, vol. 190(C), pages 408-420.
    9. Yang, Yang & Zhang, Qiao & Yu, Haoshui & Feng, Xiao, 2021. "Tech-economic and environmental analysis of energy-efficient shale gas and flue gas coupling system for chemicals manufacture and carbon capture storage and utilization," Energy, Elsevier, vol. 217(C).
    10. Liu, Jinlong & Huang, Qiao & Ulishney, Christopher & Dumitrescu, Cosmin E., 2021. "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine," Applied Energy, Elsevier, vol. 300(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smoliński, Adam & Wojtacha-Rychter, Karolina & Król, Magdalena & Magdziarczyk, Małgorzata & Polański, Jarosław & Howaniec, Natalia, 2022. "Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas," Energy, Elsevier, vol. 254(PA).
    2. Sun, Haoran & Bao, Guirong & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Numerical study of the biomass gasification process in an industrial-scale dual fluidized bed gasifier with 8MWth input," Renewable Energy, Elsevier, vol. 211(C), pages 681-696.
    3. Du, Wang & Ma, Liping & Pan, Qinghuan & Dai, Quxiu & Zhang, Mi & Yin, Xia & Xiong, Xiong & Zhang, Wei, 2023. "Full-loop CFD simulation of lignite Chemical Looping Gasification with phosphogypsum as oxygen carrier using a circulating fluidized bed," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yuyang & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Investigation of the oxy-fuel combustion process in the full-loop circulating fluidized bed," Energy, Elsevier, vol. 283(C).
    2. Yang, Shiliang & Liang, Jin & Wang, Shuai & Wang, Hua, 2021. "High-fidelity investigation of thermochemical conversion of biomass material in a full-loop circulating fluidized bed gasifier," Energy, Elsevier, vol. 224(C).
    3. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    4. Wang, Chang'an & Zhao, Lin & Sun, Ruijin & Zhou, Lei & Jin, Liyan & Che, Defu, 2022. "Experimental study on NO emission and ash deposition during oxy-fuel combustion of high-alkali coal under oxygen-staged conditions," Energy, Elsevier, vol. 251(C).
    5. Betancur, Yuli & López, Diana & Feng, Jie & Du, Zhen-Yi & Li, Wen-Ying, 2021. "Influence of potassium carbonate catalysis and pre-treatment atmosphere on the textural, structural, and chemical properties of high and low rank coals blended with biomass and their reactivity under ," Energy, Elsevier, vol. 220(C).
    6. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Catalyst-scale investigation of polydispersity effect on thermophysical properties in a commercial-scale catalytic MTO fluidized bed reactor," Energy, Elsevier, vol. 262(PA).
    7. Yang, Shiliang & Wan, Zhanghao & Wang, Shuai & Wang, Hua, 2020. "Computational fluid study of radial and axial segregation characteristics in a dual fluidized bed reactor system," Energy, Elsevier, vol. 209(C).
    8. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    9. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "CFD study of the reactive gas-solid hydrodynamics in a large-scale catalytic methanol-to-olefin fluidized bed reactor," Energy, Elsevier, vol. 243(C).
    10. Jiao, Anyao & Zhang, Hai & Liu, Jiaxun & Shen, Jun & Jiang, Xiumin, 2017. "The role of CO played in the nitric oxide heterogeneous reduction: A quantum chemistry study," Energy, Elsevier, vol. 141(C), pages 1538-1546.
    11. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).
    12. Wang, Chaowei & Wang, Chang'an & Feng, Qinqin & Mao, Qisen & Gao, Xinyue & Du, Yongbo & Li, Guangyu & Che, Defu, 2022. "Experimental evaluation on NOx formation and burnout characteristics of oxy-fuel co-combustion of ultra-low volatile carbon-based solid fuels and bituminous coal," Energy, Elsevier, vol. 248(C).
    13. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    15. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    16. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    17. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    18. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    19. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
    20. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.