IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v243y2022ics0360544221032230.html
   My bibliography  Save this article

CFD study of the reactive gas-solid hydrodynamics in a large-scale catalytic methanol-to-olefin fluidized bed reactor

Author

Listed:
  • Wan, Zhanghao
  • Yang, Shiliang
  • Hu, Jianhang
  • Bao, Guirong
  • Wang, Hua

Abstract

Lacking the understanding of multiphase flow in the fluidized bed methanol-to-olefin (MTO) process hinders the reactor design, operation, and optimization. Accordingly, a three-dimensional multiphase particle-in-cell model is established to study hydrodynamics and thermochemical characteristics during the MTO process in a fluidized bed reactor. After model validation, the influences of several critical operating parameters on reactor performance are discussed. The results show that particles in the medium part and freeboard of the reactor have heterogeneous velocity, temperature, and heat transfer coefficient (HTC) distributions. Thermal quantities of gas and solid phases are uniformly distributed in the medium part and freeboard of the reactor. The particle-averaged HTC under ranges from 60 to 120 W/(m2·K). Increasing wall temperature enlarges the particle HTC due to the enhanced exothermic reactions. Decreasing the particle diameter gives rise to a larger particle HTC. The vertical particle dispersion coefficient (Dz) is in the range of 0.01 m2/s to 0.03 m2/s. Methanol converts into olefin in a short period. Increasing methanol to catalyst ratio and wall temperature increases olefin including C2H4, C3H6, C4H8, and C5H10, and promotes the gas thermal properties. Particles with multi-sizes show a better MTO conversion performance than those with mono-sizes regarding the particle HTC and gas products.

Suggested Citation

  • Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "CFD study of the reactive gas-solid hydrodynamics in a large-scale catalytic methanol-to-olefin fluidized bed reactor," Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221032230
    DOI: 10.1016/j.energy.2021.122974
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
    2. Xu, Zhongming & Fang, Chenhao & Ma, Tieju, 2020. "Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction," Energy, Elsevier, vol. 191(C).
    3. Kraft, Stephan & Kirnbauer, Friedrich & Hofbauer, Hermann, 2017. "CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8MW fuel input," Applied Energy, Elsevier, vol. 190(C), pages 408-420.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    2. Yang, Shiliang & Wan, Zhanghao & Wang, Shuai & Wang, Hua, 2020. "Computational fluid study of radial and axial segregation characteristics in a dual fluidized bed reactor system," Energy, Elsevier, vol. 209(C).
    3. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    4. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).
    5. Yang, Shiliang & Liang, Jin & Wang, Shuai & Wang, Hua, 2021. "High-fidelity investigation of thermochemical conversion of biomass material in a full-loop circulating fluidized bed gasifier," Energy, Elsevier, vol. 224(C).
    6. Kuba, Matthias & Kraft, Stephan & Kirnbauer, Friedrich & Maierhans, Frank & Hofbauer, Hermann, 2018. "Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass," Applied Energy, Elsevier, vol. 210(C), pages 230-240.
    7. Bartela, Łukasz & Kotowicz, Janusz & Dubiel-Jurgaś, Klaudia, 2018. "Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine," Energy, Elsevier, vol. 150(C), pages 601-616.
    8. Wan, Zhanghao & Hu, Jianhang & Qi, Xianjin, 2021. "Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 225(C).
    9. Lin, Junjie & Luo, Kun & Wang, Shuai & Sun, Liyan & Fan, Jianren, 2022. "Particle-scale study of coal-direct chemical looping combustion (CLC)," Energy, Elsevier, vol. 250(C).
    10. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    11. Moglianesi, Andrea & Keppo, Ilkka & Lerede, Daniele & Savoldi, Laura, 2023. "Role of technology learning in the decarbonization of the iron and steel sector: An energy system approach using a global-scale optimization model," Energy, Elsevier, vol. 274(C).
    12. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Catalyst-scale investigation of polydispersity effect on thermophysical properties in a commercial-scale catalytic MTO fluidized bed reactor," Energy, Elsevier, vol. 262(PA).
    13. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
    14. Klimanek, Adam & Bigda, Joanna, 2018. "CFD modelling of CO2 enhanced gasification of coal in a pressurized circulating fluidized bed reactor," Energy, Elsevier, vol. 160(C), pages 710-719.
    15. Rajan Jaiswal & Britt. M. E. Moldestad & Marianne S. Eikeland & Henrik K. Nielsen & Rajan Kumar Thapa, 2022. "Image Processing and Measurement of the Bubble Properties in a Bubbling Fluidized Bed Reactor," Energies, MDPI, vol. 15(21), pages 1-18, October.
    16. Lee, Byoung-Hwa & Kim, Kang-Min & Bae, Yoon-Ho & Oh, Hyun-Suk & Kim, Gyu-Bo & Jeon, Chung-Hwan & Ahn, Young-Heon, 2022. "Effect of bed particle size on the gas-particle hydrodynamics and wall erosion characteristics in a 550 MWe USC CFB boiler using CPFD simulation," Energy, Elsevier, vol. 254(PA).
    17. Wang, Yihan & Wen, Zongguo & Yao, Jianguo & Doh Dinga, Christian, 2020. "Multi-objective optimization of synergic energy conservation and CO2 emission reduction in China's iron and steel industry under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Karl, Jürgen & Pröll, Tobias, 2018. "Steam gasification of biomass in dual fluidized bed gasifiers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 64-78.
    19. Ding, Bingqing & Makowski, Marek & Nahorski, Zbigniew & Ren, Hongtao & Ma, Tieju, 2022. "Optimizing the technology pathway of China's liquid fuel production considering uncertain oil prices: A robust programming model," Energy Economics, Elsevier, vol. 115(C).
    20. Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221032230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.