IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v251y2019ic77.html
   My bibliography  Save this article

Thermochemical assessment of chemical looping assisted by oxygen uncoupling with a MnFe-based oxygen carrier

Author

Listed:
  • Abad, A.
  • Pérez-Vega, R.
  • de Diego, L.F.
  • Gayán, P.
  • Izquierdo, M.T.
  • García-Labiano, F.
  • Adánez, J.

Abstract

A previously developed manganese-iron mixed oxide doped with TiO2 shows promising properties for the combustion of solid fuels with intrinsic CO2 capture by Chemical Lopping assisted by Oxygen Uncoupling (CLaOU) owing to its oxygen uncoupling capability, i.e. ability to generate gaseous oxygen at high temperature, and to oxidize gaseous fuels such as H2, CO or CH4 by reacting with lattice oxygen. In this work, a window of suitable operating conditions was determined to facilitate the use of this material in a CLaOU unit. For this purpose, mass and enthalpy balances were performed for the whole CLaOU unit considering theoretical values of thermochemical parameters, such as the equilibrium constant of relevant reactions in CLaOU and the formation enthalpies of reacting solids. An air reactor temperature of 1148 K and a high air excess ratio are suggested in order to promote the transfer of oxygen via the oxygen uncoupling mechanism, which would be preferable for the combustion of solid fuels. Auto-thermal operation of the CLaOU unit is guaranteed for air excess ratio values λ < 3. The fuel reactor temperature is highly influenced by the oxygen carrier-to-fuel ratio (ϕ) and the oxygen carrier regeneration in the air reactor. Assuming a 50–75% regeneration of the oxygen uncoupling capability, and ϕ = 4–6, the fuel reactor temperature would be between 35 and 50 K above the air reactor temperature. The higher temperature in the fuel reactor could promote the fuel conversion, while oxygen carrier regeneration would be guaranteed by the lower air reactor temperature.

Suggested Citation

  • Abad, A. & Pérez-Vega, R. & de Diego, L.F. & Gayán, P. & Izquierdo, M.T. & García-Labiano, F. & Adánez, J., 2019. "Thermochemical assessment of chemical looping assisted by oxygen uncoupling with a MnFe-based oxygen carrier," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:251:y:2019:i:c:77
    DOI: 10.1016/j.apenergy.2019.113340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919310141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rydén, Magnus & Leion, Henrik & Mattisson, Tobias & Lyngfelt, Anders, 2014. "Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling," Applied Energy, Elsevier, vol. 113(C), pages 1924-1932.
    2. Khakpoor, Nima & Mostafavi, Ehsan & Mahinpey, Nader & De la Hoz Siegler, Hector, 2019. "Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion," Energy, Elsevier, vol. 169(C), pages 329-337.
    3. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    4. Pérez-Vega, R. & Abad, A. & Izquierdo, M.T. & Gayán, P. & de Diego, L.F. & Adánez, J., 2019. "Evaluation of Mn-Fe mixed oxide doped with TiO2 for the combustion with CO2 capture by Chemical Looping assisted by Oxygen Uncoupling," Applied Energy, Elsevier, vol. 237(C), pages 822-835.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cabello, Arturo & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2021. "Increasing energy efficiency in chemical looping combustion of methane by in-situ activation of perovskite-based oxygen carriers," Applied Energy, Elsevier, vol. 287(C).
    2. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-Vega, R. & Abad, A. & Izquierdo, M.T. & Gayán, P. & de Diego, L.F. & Adánez, J., 2019. "Evaluation of Mn-Fe mixed oxide doped with TiO2 for the combustion with CO2 capture by Chemical Looping assisted by Oxygen Uncoupling," Applied Energy, Elsevier, vol. 237(C), pages 822-835.
    2. Bartocci, Pietro & Abad, Alberto & Mattisson, Tobias & Cabello, Arturo & Loscertales, Margarita de las Obras & Negredo, Teresa Mendiara & Zampilli, Mauro & Taiana, Andrea & Serra, Angela & Arauzo, Inm, 2022. "Bioenergy with Carbon Capture and Storage (BECCS) developed by coupling a Pressurised Chemical Looping combustor with a turbo expander: How to optimize plant efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Schmitz, Matthias & Linderholm, Carl Johan, 2016. "Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10kW pilot," Applied Energy, Elsevier, vol. 169(C), pages 729-737.
    4. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    5. Zhao, Haibo & Guo, Lei & Zou, Xixian, 2015. "Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 408-415.
    6. Li, Fang-zhou & Kang, Jing-xian & Song, Yun-cai & Feng, Jie & Li, Wen-ying, 2020. "Thermodynamic feasibility for molybdenum-based gaseous oxides assisted looping coal gasification and its derived power plant," Energy, Elsevier, vol. 194(C).
    7. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    8. Galinsky, Nathan & Mishra, Amit & Zhang, Jia & Li, Fanxing, 2015. "Ca1−xAxMnO3 (A=Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 157(C), pages 358-367.
    9. Iñaki Adánez-Rubio & Antón Pérez-Astray & Alberto Abad & Pilar Gayán & Luis F. Diego & Juan Adánez, 2019. "Chemical looping with oxygen uncoupling: an advanced biomass combustion technology to avoid CO2 emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1293-1306, October.
    10. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
    11. Galinsky, Nathan & Sendi, Marwan & Bowers, Lindsay & Li, Fanxing, 2016. "CaMn1−xBxO3−δ (B=Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 174(C), pages 80-87.
    12. Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    13. Negri, Valentina & Galán-Martín, Ángel & Pozo, Carlos & Fajardy, Mathilde & Reiner, David M. & Mac Dowell, Niall & Guillén-Gosálbez, Gonzalo, 2021. "Life cycle optimization of BECCS supply chains in the European Union," Applied Energy, Elsevier, vol. 298(C).
    14. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    15. Tobias Mattisson & Fredrik Hildor & Ye Li & Carl Linderholm, 2020. "Negative emissions of carbon dioxide through chemical-looping combustion (CLC) and gasification (CLG) using oxygen carriers based on manganese and iron," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 497-517, April.
    16. Hu, Wenting & Donat, Felix & Scott, S.A. & Dennis, J.S., 2016. "Kinetics of oxygen uncoupling of a copper based oxygen carrier," Applied Energy, Elsevier, vol. 161(C), pages 92-100.
    17. Henrik Leion & Volkmar Frick & Fredrik Hildor, 2018. "Experimental Method and Setup for Laboratory Fluidized Bed Reactor Testing," Energies, MDPI, vol. 11(10), pages 1-17, September.
    18. Huang, Jijiang & Liu, Wen & Hu, Wenting & Metcalfe, Ian & Yang, Yanhui & Liu, Bin, 2019. "Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications," Applied Energy, Elsevier, vol. 236(C), pages 635-647.
    19. Xu, Lei & Sun, Hongming & Li, Zhenshan & Cai, Ningsheng, 2016. "Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor," Applied Energy, Elsevier, vol. 162(C), pages 940-947.
    20. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:251:y:2019:i:c:77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.