Thermodynamic feasibility for molybdenum-based gaseous oxides assisted looping coal gasification and its derived power plant
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116830
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ghosh, S. & De, S., 2006. "Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell," Energy, Elsevier, vol. 31(2), pages 345-363.
- Mishra, Navneet & Bhui, Barnali & Vairakannu, Prabu, 2019. "Comparative evaluation of performance of high and low ash coal fuelled chemical looping combustion integrated combined cycle power generating systems," Energy, Elsevier, vol. 169(C), pages 305-318.
- Rydén, Magnus & Leion, Henrik & Mattisson, Tobias & Lyngfelt, Anders, 2014. "Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling," Applied Energy, Elsevier, vol. 113(C), pages 1924-1932.
- Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
- Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni G., 2010. "Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization," Applied Energy, Elsevier, vol. 87(11), pages 3374-3383, November.
- Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
- Mansouri Majoumerd, Mohammad & De, Sudipta & Assadi, Mohsen & Breuhaus, Peter, 2012. "An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas: Simulation results for the baseline configuration," Applied Energy, Elsevier, vol. 99(C), pages 280-290.
- Park, Sung Ku & Kim, Tong Seop & Sohn, Jeong L. & Lee, Young Duk, 2011. "An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture," Applied Energy, Elsevier, vol. 88(4), pages 1187-1196, April.
- Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni, 2013. "Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up," Energy, Elsevier, vol. 53(C), pages 221-229.
- Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
- Tong, Andrew & Bayham, Samuel & Kathe, Mandar V. & Zeng, Liang & Luo, Siwei & Fan, Liang-Shih, 2014. "Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1836-1845.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Zhengkuan & Tian, Songfeng & Zhang, Du & Chang, Chengzhi & Zhang, Qian & Zhang, Peijie, 2022. "Optimization study on improving energy efficiency of power cycle system of staged coal gasification coupled with supercritical carbon dioxide," Energy, Elsevier, vol. 239(PC).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
- Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
- Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
- Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
- Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
- Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
- Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
- Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari & Mousavi, Seyed Ali, 2019. "Evaluation of an optimal integrated design multi-fuel multi-product electrical power plant by energy and exergy analyses," Energy, Elsevier, vol. 169(C), pages 61-78.
- Mansouri Majoumerd, Mohammad & Raas, Han & De, Sudipta & Assadi, Mohsen, 2014. "Estimation of performance variation of future generation IGCC with coal quality and gasification process – Simulation results of EU H2-IGCC project," Applied Energy, Elsevier, vol. 113(C), pages 452-462.
- Taufiq, Bin Nur & Kikuchi, Yasunori & Ishimoto, Takayoshi & Honda, Kuniaki & Koyama, Michihisa, 2015. "Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation," Applied Energy, Elsevier, vol. 147(C), pages 486-499.
- Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2023. "Ammonia from solid fuels: A cost-effective route to energy security with negative CO2 emissions," Energy, Elsevier, vol. 278(PA).
- Tang, Mingchen & Xu, Long & Fan, Maohong, 2015. "Progress in oxygen carrier development of methane-based chemical-looping reforming: A review," Applied Energy, Elsevier, vol. 151(C), pages 143-156.
- Yan, Linbo & He, Boshu & Pei, Xiaohui & Li, Xusheng & Wang, Chaojun, 2013. "Energy and exergy analyses of a Zero emission coal system," Energy, Elsevier, vol. 55(C), pages 1094-1103.
- Hamers, H.P. & Romano, M.C. & Spallina, V. & Chiesa, P. & Gallucci, F. & van Sint Annaland, M., 2015. "Boosting the IGCLC process efficiency by optimizing the desulfurization step," Applied Energy, Elsevier, vol. 157(C), pages 422-432.
- Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
- Rhushikesh Ghotkar & Ellen B. Stechel & Ivan Ermanoski & Ryan J. Milcarek, 2020. "Hybrid Fuel Cell—Supercritical CO 2 Brayton Cycle for CO 2 Sequestration-Ready Combined Heat and Power," Energies, MDPI, vol. 13(19), pages 1-20, September.
- Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
- Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
- Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
- Galinsky, Nathan & Mishra, Amit & Zhang, Jia & Li, Fanxing, 2015. "Ca1−xAxMnO3 (A=Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 157(C), pages 358-367.
More about this item
Keywords
Molybdenum oxides; Gaseous-oxide-assisted-looping; Coal gasification; CO2 capture; Electricity;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325253. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.