IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp318-339.html
   My bibliography  Save this article

Economic and environmental potential for solar assisted central heating plants in the EU residential sector: Contribution to the 2030 climate and energy EU agenda

Author

Listed:
  • Tulus, Victor
  • Abokersh, Mohamed Hany
  • Cabeza, Luisa F.
  • Vallès, Manel
  • Jiménez, Laureano
  • Boer, Dieter

Abstract

Aligning with the ambitious EU 2030 climate and energy package for cutting the greenhouse emissions and replacing conventional heat sources through the presence of renewable energy share inside efficient district heating fields, central solar heating plants coupled with seasonal storage (CSHPSS) can have a viable contribution to this goal. However, the technical performance variation combined with inadequate financial assessment and insufficient environmental impact data associated with the deployment of those innovative district heating systems represents a big challenge for the broad implementation of CSHPSS in Europe. In this context, our paper presents a comprehensive evaluation for the possibility of integrating CSHPSS in the residential sector in various EU member states through the formulation of a multi-objective optimization framework. This framework comprises the life cycle cost analysis for the economic evaluation and the life cycle assessment for the environmental impact estimation simultaneously. The technical performance is also considered by satisfying both the space heating demand and the domestic hot water services. The methodological framework is applied to a residential neighborhood community of 1120 apartments in various EU climate zones with Madrid, Athens, Berlin, and Helsinki acting as a proxy for the Mediterranean continental, Mediterranean, central European, and Nordic climates, respectively. The optimization results regarding the energy performance show that the CSHPSS can achieve a renewable energy fraction above 90% for the investigated climate zones. At the same time, the environmental assessment shows significant improvement when using the CSHPSS in comparison to a natural gas heating system, in those cases the environmental impact is reduced up to 82.1–86.5%. On the other hand, substantial economic improvement is limited, especially in the Mediterranean climate zone (Athens) due to low heating demands and the prices of the non-renewable resources. There the total economic cost of the CSHPSS plants can increase up to 50.8% compared to a natural gas heating system. However, considering the incremental tendency in natural gas prices all over EU nowadays, the study of future plant costs confirms its favorable long-term economic feasibility.

Suggested Citation

  • Tulus, Victor & Abokersh, Mohamed Hany & Cabeza, Luisa F. & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2019. "Economic and environmental potential for solar assisted central heating plants in the EU residential sector: Contribution to the 2030 climate and energy EU agenda," Applied Energy, Elsevier, vol. 236(C), pages 318-339.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:318-339
    DOI: 10.1016/j.apenergy.2018.11.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918318105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    2. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    3. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    4. Rämä, M. & Mohammadi, S., 2017. "Comparison of distributed and centralised integration of solar heat in a district heating system," Energy, Elsevier, vol. 137(C), pages 649-660.
    5. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    6. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
    7. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
    8. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
    9. Shariah, Adnan & Al-Akhras, M-Ali & Al-Omari, I.A., 2002. "Optimizing the tilt angle of solar collectors," Renewable Energy, Elsevier, vol. 26(4), pages 587-598.
    10. Paiho, Satu & Hoang, Ha & Hukkalainen, Mari, 2017. "Energy and emission analyses of solar assisted local energy solutions with seasonal heat storage in a Finnish case district," Renewable Energy, Elsevier, vol. 107(C), pages 147-155.
    11. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2017. "A long-term performance analysis of three different configurations for community-sized solar heating systems in high latitudes," Renewable Energy, Elsevier, vol. 113(C), pages 479-493.
    12. Rad, Farzin M. & Fung, Alan S., 2016. "Solar community heating and cooling system with borehole thermal energy storage – Review of systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1550-1561.
    13. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    14. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    15. Tulus, Victor & Boer, Dieter & Cabeza, Luisa F. & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2016. "Enhanced thermal energy supply via central solar heating plants with seasonal storage: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 181(C), pages 549-561.
    16. Tian, Zhiyong & Perers, Bengt & Furbo, Simon & Fan, Jianhua, 2017. "Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series," Applied Energy, Elsevier, vol. 205(C), pages 417-427.
    17. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
    18. Carpaneto, E. & Lazzeroni, P. & Repetto, M., 2015. "Optimal integration of solar energy in a district heating network," Renewable Energy, Elsevier, vol. 75(C), pages 714-721.
    19. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2009. "Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment," Applied Energy, Elsevier, vol. 86(9), pages 1712-1722, September.
    20. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    21. Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
    22. Pavičević, Matija & Novosel, Tomislav & Pukšec, Tomislav & Duić, Neven, 2017. "Hourly optimization and sizing of district heating systems considering building refurbishment – Case study for the city of Zagreb," Energy, Elsevier, vol. 137(C), pages 1264-1276.
    23. Flynn, Ciarán & Sirén, Kai, 2015. "Influence of location and design on the performance of a solar district heating system equipped with borehole seasonal storage," Renewable Energy, Elsevier, vol. 81(C), pages 377-388.
    24. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    25. Buoro, Dario & Pinamonti, Piero & Reini, Mauro, 2014. "Optimization of a Distributed Cogeneration System with solar district heating," Applied Energy, Elsevier, vol. 124(C), pages 298-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Changchun & Han, Wei & Wang, Zefeng & Zhang, Na & Kang, Qilan & Liu, Meng, 2021. "Proposal and assessment of a new solar space heating system by integrating an absorption-compression heat pump," Applied Energy, Elsevier, vol. 294(C).
    2. Tschopp, Daniel & Tian, Zhiyong & Berberich, Magdalena & Fan, Jianhua & Perers, Bengt & Furbo, Simon, 2020. "Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria," Applied Energy, Elsevier, vol. 270(C).
    3. Abokersh, Mohamed Hany & Gangwar, Sachin & Spiekman, Marleen & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2021. "Sustainability insights on emerging solar district heating technologies to boost the nearly zero energy building concept," Renewable Energy, Elsevier, vol. 180(C), pages 893-913.
    4. Abokersh, Mohamed Hany & Norouzi, Masoud & Boer, Dieter & Cabeza, Luisa F. & Casa, Gemma & Prieto, Cristina & Jiménez, Laureano & Vallès, Manel, 2021. "A framework for sustainable evaluation of thermal energy storage in circular economy," Renewable Energy, Elsevier, vol. 175(C), pages 686-701.
    5. Narula, Kapil & De Oliveira Filho, Fleury & Chambers, Jonathan & Romano, Elliot & Hollmuller, Pierre & Patel, Martin Kumar, 2020. "Assessment of techno-economic feasibility of centralised seasonal thermal energy storage for decarbonising the Swiss residential heating sector," Renewable Energy, Elsevier, vol. 161(C), pages 1209-1225.
    6. Ochs, Fabian & Dahash, Abdulrahman & Tosatto, Alice & Bianchi Janetti, Michele, 2020. "Techno-economic planning and construction of cost-effective large-scale hot water thermal energy storage for Renewable District heating systems," Renewable Energy, Elsevier, vol. 150(C), pages 1165-1177.
    7. Adam X. Hearn & Raul Castaño-Rosa, 2021. "Towards a Just Energy Transition, Barriers and Opportunities for Positive Energy District Creation in Spain," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    8. Daniel Scamman & Baltazar Solano-Rodríguez & Steve Pye & Lai Fong Chiu & Andrew Z. P. Smith & Tiziano Gallo Cassarino & Mark Barrett & Robert Lowe, 2020. "Heat Decarbonisation Modelling Approaches in the UK: An Energy System Architecture Perspective," Energies, MDPI, vol. 13(8), pages 1-28, April.
    9. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    10. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Wojciech Dybaś, 2019. "Capacity Market Implementation in Poland: Analysis of a Survey on Consequences for the Electricity Market and for Energy Management," Energies, MDPI, vol. 12(5), pages 1-16, March.
    11. Chen, Yusheng & Guo, Tong & Kainz, Josef & Kriegel, Martin & Gaderer, Matthias, 2022. "Design of a biomass-heating network with an integrated heat pump: A simulation-based multi-objective optimization framework," Applied Energy, Elsevier, vol. 326(C).
    12. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    13. Zhao, Jinling & Lyu, Lianyi & Li, Xuexin, 2020. "Numerical analysis of the operation regulation in a solar heating system with seasonal water pool thermal storage," Renewable Energy, Elsevier, vol. 150(C), pages 1118-1126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    2. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
    3. Rosato, Antonio & Ciervo, Antonio & Ciampi, Giovanni & Sibilio, Sergio, 2019. "Effects of solar field design on the energy, environmental and economic performance of a solar district heating network serving Italian residential and school buildings," Renewable Energy, Elsevier, vol. 143(C), pages 596-610.
    4. Renaldi, Renaldi & Friedrich, Daniel, 2019. "Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK," Applied Energy, Elsevier, vol. 236(C), pages 388-400.
    5. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    6. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
    8. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    9. Gao, Datong & Kwan, Trevor Hocksun & Hu, Maobin & Pei, Gang, 2022. "The energy, exergy, and techno-economic analysis of a solar seasonal residual energy utilization system," Energy, Elsevier, vol. 248(C).
    10. Mäki, Elina & Kannari, Lotta & Hannula, Ilkka & Shemeikka, Jari, 2021. "Decarbonization of a district heating system with a combination of solar heat and bioenergy: A techno-economic case study in the Northern European context," Renewable Energy, Elsevier, vol. 175(C), pages 1174-1199.
    11. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
    12. Yang, Libing & Entchev, Evgueniy & Rosato, Antonio & Sibilio, Sergio, 2017. "Smart thermal grid with integration of distributed and centralized solar energy systems," Energy, Elsevier, vol. 122(C), pages 471-481.
    13. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    15. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    16. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    17. Giordano, Nicolò & Raymond, Jasmin, 2019. "Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    20. Chu, Shunzhou & Sethuvenkatraman, Subbu & Goldsworthy, Mark & Yuan, Guofeng, 2022. "Techno-economic assessment of solar assisted precinct level heating systems with seasonal heat storage for Australian cities," Renewable Energy, Elsevier, vol. 201(P1), pages 841-853.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:318-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.