IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v229y2018icp151-162.html
   My bibliography  Save this article

Energy modeling framework for optimizing heat recovery in a seasonal food processing facility

Author

Listed:
  • Legorburu, Gabriel
  • Smith, Amanda D.

Abstract

Societal, cultural and economic factors are driving food processors to reduce energy consumed per unit mass of food. This presents a unique problem because time variant batch processing using low to medium grade heat is common in food production facilities. Heat recovery methods may be implemented by food processors to reduce energy consumption; however, temporal variance in the process and utility flow require the development of a robust, easily implemented energy model to accurately determine system effectiveness and economic incentive. A bottom-up modular computational framework is proposed to model the energy consumption of a cannery. The model predicts that the cannery will require 612 kJ gas/kg product produced, which is within the ranges provided in previous literature. Results show that adding a globally optimized indirect heat recovery system will reduce the gas consumption by 6% annually. The proposed framework, used here to represent a cannery, may be adapted to many different types of food processing facilities. With a clear picture of energy consumption by device, and the ability to predict the impact of process modification or heat recovery, plant-level energy usage for food processing may be significantly reduced.

Suggested Citation

  • Legorburu, Gabriel & Smith, Amanda D., 2018. "Energy modeling framework for optimizing heat recovery in a seasonal food processing facility," Applied Energy, Elsevier, vol. 229(C), pages 151-162.
  • Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:151-162
    DOI: 10.1016/j.apenergy.2018.07.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918311322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jingxin & Loh, Kai-Chee & Li, Wangliang & Lim, Jun Wei & Dai, Yanjun & Tong, Yen Wah, 2017. "Three-stage anaerobic digester for food waste," Applied Energy, Elsevier, vol. 194(C), pages 287-295.
    2. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    3. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    4. Miah, J.H. & Griffiths, A. & McNeill, R. & Poonaji, I. & Martin, R. & Yang, A. & Morse, S., 2014. "Heat integration in processes with diverse production lines: A comprehensive framework and an application in food industry," Applied Energy, Elsevier, vol. 132(C), pages 452-464.
    5. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    6. Freschi, F. & Giaccone, L. & Lazzeroni, P. & Repetto, M., 2013. "Economic and environmental analysis of a trigeneration system for food-industry: A case study," Applied Energy, Elsevier, vol. 107(C), pages 157-172.
    7. Zhu, Kai & Li, Xueqiang & Campana, Pietro Elia & Li, Hailong & Yan, Jinyue, 2018. "Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses," Applied Energy, Elsevier, vol. 216(C), pages 348-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panda, Brajesh Kumar & Mishra, Gayatri & Panigrahi, Shubham Subrot & Shrivastava, Shanker Lal, 2021. "Microwave-assisted parboiling of high moisture paddy: A comparative study based on energy utilization, process economy and grain quality with conventional parboiling," Energy, Elsevier, vol. 232(C).
    2. Oviroh, Peter Ozaveshe & Austin-Breneman, Jesse & Chien, Cheng-Chun & Chakravarthula, Praneet Nallan & Harikumar, Vaishnavi & Shiva, Pranjal & Kimbowa, Alvin Bagetuuma & Luntz, Jonathan & Miyingo, Emm, 2023. "Micro Water-Energy-Food (MicroWEF) Nexus: A system design optimization framework for Integrated Natural Resource Conservation and Development (INRCD) projects at community scale," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    3. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    4. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    5. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    6. Jacob, Rhys & Belusko, Martin & Liu, Ming & Saman, Wasim & Bruno, Frank, 2019. "Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications," Renewable Energy, Elsevier, vol. 131(C), pages 1035-1046.
    7. Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
    8. Angel G. Fernández & Luis González-Fernández & Yaroslav Grosu & Jalel Labidi, 2022. "Physicochemical Characterization of Phase Change Materials for Industrial Waste Heat Recovery Applications," Energies, MDPI, vol. 15(10), pages 1-12, May.
    9. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    11. Ji, Chenzhen & Qin, Zhen & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow," Applied Energy, Elsevier, vol. 205(C), pages 1-12.
    12. Miguel Castro Oliveira & Henrique A. Matos, 2023. "Sustainability and Strategic Assessment of Water and Energy Integration Systems: Case Studies of the Process Industry in Portugal," Energies, MDPI, vol. 17(1), pages 1, December.
    13. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    14. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review on Water and Energy Integration in Process Industry: Water-Heat Nexus," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    15. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    16. Qin, Zhen & Ji, Chenzhen & Low, Zheng Hua & Tong, Wei & Wu, Chenlong & Duan, Fei, 2022. "Geometry effect of phase change material container on waste heat recovery enhancement," Applied Energy, Elsevier, vol. 327(C).
    17. Zongming Yang & Roman Radchenko & Mykola Radchenko & Andrii Radchenko & Victoria Kornienko, 2022. "Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    18. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    19. Yang, Jing & Zhang, Zhiyong & Yang, Mingwan & Chen, Jiayu, 2019. "Optimal operation strategy of green supply chain based on waste heat recovery quality," Energy, Elsevier, vol. 183(C), pages 599-605.
    20. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:229:y:2018:i:c:p:151-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.