IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224040210.html
   My bibliography  Save this article

Experimental characterization of phase change materials for thermal energy storage in the temperature range between 270 °C and 400 °C

Author

Listed:
  • Martínez, Franklin R.
  • Borri, Emiliano
  • Ushak, Svetlana
  • Mani Kala, Saranprabhu
  • Prieto, Cristina
  • Cabeza, Luisa F.

Abstract

Thermal energy storage (TES) with phase change materials (PCM) is an interesting technology to be used to improve the energy efficiency of industrial processes, contributing to their decarbonization and the integration of renewable energy sources. Even though literature lists many materials that can be used as PCM in the temperature range between 270 °C and 400 °C, most of them lack a full characterisation, jeopardising their potential implementation by practitioners and scientists. Therefore, this paper presents a complete experimental characterisation of 24 PCMs, with melting temperature, melting enthalpy, degradation temperature, and thermal conductivity in the solid state (at room temperature) determination. Moreover, corrosion tests with two different stainless-steel fibres and with Alloy 20 fibres is presented. The findings obtained in the characterization highlight the necessity of these analyses, as notable differences were observed compared to the available data, particularly in thermal stability and thermal conductivity. Moreover, the findings obtained in the compatibility test reveals that out of the 24 selected PCMs, 11 are potentially compatible with Alloy 20, and 8 with both stainless-steel fibres under environmental conditions (air atmosphere). Finally, the results presented will allow researchers and practitioners to have very detailed data on the characterisation of those PCMs.

Suggested Citation

  • Martínez, Franklin R. & Borri, Emiliano & Ushak, Svetlana & Mani Kala, Saranprabhu & Prieto, Cristina & Cabeza, Luisa F., 2025. "Experimental characterization of phase change materials for thermal energy storage in the temperature range between 270 °C and 400 °C," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040210
    DOI: 10.1016/j.energy.2024.134243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xialai & Lin, Ling & Xie, Lei & Chen, Junghui & Shan, Lu, 2024. "Fast robust optimization of ORC based on an artificial neural network for waste heat recovery," Energy, Elsevier, vol. 301(C).
    2. Prieto, Cristina & Cabeza, Luisa F., 2019. "Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance," Applied Energy, Elsevier, vol. 254(C).
    3. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    4. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    5. Mohan, Gowtham & Venkataraman, Mahesh B. & Coventry, Joe, 2019. "Sensible energy storage options for concentrating solar power plants operating above 600 °C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 319-337.
    6. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
    7. Kenisarin, Murat M., 2010. "High-temperature phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 955-970, April.
    8. Sun, Dahan & Wang, Cong & Liu, Zekuan & Qin, Jiang & Liu, Zhongyan, 2024. "Experimental and simulation study on a new gradient waste heat recovery system with a wider application range," Energy, Elsevier, vol. 301(C).
    9. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    10. Gaurav, Gajendra Kumar & Khanam, Shabina & Zhang, Fuchun & Liu, Xinghui, 2024. "Recovery and utilisation of waste heat for sponge iron process through combined preheating and power generation," Energy, Elsevier, vol. 301(C).
    11. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    12. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    2. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    3. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    4. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    6. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Vigneshwaran, K. & Sodhi, Gurpreet Singh & Muthukumar, P. & Guha, Anurag & Senthilmurugan, S., 2019. "Experimental and numerical investigations on high temperature cast steel based sensible heat storage system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. He, Xibo & Wang, Wei & Shuai, Yong & Hou, Yicheng & Qiu, Jun, 2025. "Cross-scale thermal analysis and comprehensive evaluation of biomimetic skin-flesh composite phase change material for waste heat recovery," Energy, Elsevier, vol. 314(C).
    10. Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
    11. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    13. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    15. Jacob, Rhys & Bruno, Frank, 2015. "Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 79-87.
    16. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    17. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
    18. Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
    19. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    20. Jacob, Rhys & Belusko, Martin & Liu, Ming & Saman, Wasim & Bruno, Frank, 2019. "Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications," Renewable Energy, Elsevier, vol. 131(C), pages 1035-1046.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.