IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp1486-1498.html
   My bibliography  Save this article

Feasibility study about using a stand-alone wind power driven heat pump for space heating

Author

Listed:
  • Li, Hailong
  • Campana, Pietro Elia
  • Tan, Yuting
  • Yan, Jinyue

Abstract

Reducing energy consumption and increasing the use of renewable energy in the building sector are crucial to the mitigation of climate change. Wind power driven heat pumps have been considered as a sustainable measure to supply heat to the detached houses, especially those that even do not have access to the electricity grid. This work is to investigate the dynamic performance of a heat pump system driven by wind turbine through dynamic simulations. In order to understand the influence on the thermal comfort, which is the primary purpose of space heating, the variation of indoor temperature has been simulated in details. Results show that the wind turbine is not able to provide the electricity required by the heat pump during the heating season due to the intermittent characteristic of wind power. To improve the system performance, the influences of the capacity of wind turbine, the size of battery and the setpoint of indoor temperature were assessed. It is found that increasing the capacity of wind turbines is not necessary to reduce the loss of load probability; while on the contrary, increasing the size of battery can always reduce the loss of load probability. The setpoint temperature clearly affects the loss of load probability. A higher setpoint temperature results in a higher loss of thermal comfort probability. In addition, it is also found that the time interval used in the dynamic simulation has significant influence on the result. In order to have more accurate results, it is of great importance to choose a high resolution time step to capture the dynamic behaviour of the heat supply and its effect on the indoor temperature.

Suggested Citation

  • Li, Hailong & Campana, Pietro Elia & Tan, Yuting & Yan, Jinyue, 2018. "Feasibility study about using a stand-alone wind power driven heat pump for space heating," Applied Energy, Elsevier, vol. 228(C), pages 1486-1498.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1486-1498
    DOI: 10.1016/j.apenergy.2018.06.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191831016X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poulet, P. & Outbib, R., 2015. "Energy production for dwellings by using hybrid systems based on heat pump variable input power," Applied Energy, Elsevier, vol. 147(C), pages 413-429.
    2. ., 2017. "Building a consequentialist framework," Chapters, in: Morality and Power, chapter 11, pages 181-196, Edward Elgar Publishing.
    3. ., 2017. "Building an economics department," Chapters, in: The Value of Applied Economics, chapter 4, pages 64-84, Edward Elgar Publishing.
    4. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    5. Amos Darko & Albert P. C. Chan, 2017. "Review of Barriers to Green Building Adoption," Sustainable Development, John Wiley & Sons, Ltd., vol. 25(3), pages 167-179, May.
    6. Waite, Michael & Modi, Vijay, 2014. "Potential for increased wind-generated electricity utilization using heat pumps in urban areas," Applied Energy, Elsevier, vol. 135(C), pages 634-642.
    7. Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
    8. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Carlo Roselli & Maurizio Sasso & Francesco Tariello, 2020. "A Wind Electric-Driven Combined Heating, Cooling, and Electricity System for an Office Building in Two Italian Cities," Energies, MDPI, vol. 13(4), pages 1-25, February.
    3. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    4. Zhong, Xiaohui & Chen, Tao & Sun, Xiangyu & Song, Juanjuan & Zeng, Jiajun, 2022. "Conventional and advanced exergy analysis of a novel wind-to-heat system," Energy, Elsevier, vol. 261(PA).
    5. Ma, Tengfei & Pei, Wei & Deng, Wei & Xiao, Hao & Yang, Yanhong & Tang, Chenghong, 2022. "A Nash bargaining-based cooperative planning and operation method for wind-hydrogen-heat multi-agent energy system," Energy, Elsevier, vol. 239(PE).
    6. Maryori C. Díaz-Ramírez & Víctor J. Ferreira & Tatiana García-Armingol & Ana María López-Sabirón & Germán Ferreira, 2020. "Environmental Assessment of Electrochemical Energy Storage Device Manufacturing to Identify Drivers for Attaining Goals of Sustainable Materials 4.0," Sustainability, MDPI, vol. 12(1), pages 1-20, January.
    7. Bartłomiej Ciapała & Jakub Jurasz & Alexander Kies, 2019. "The Potential of Wind Power-Supported Geothermal District Heating Systems—Model Results for a Location in Warsaw (Poland)," Energies, MDPI, vol. 12(19), pages 1-15, September.
    8. Sun, X.Y. & Zhong, X.H. & Zhang, M.Y. & Zhou, T., 2022. "Experimental investigation on a novel wind-to-heat system with high efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Rafał Figaj & Maciej Żołądek, 2021. "Operation and Performance Assessment of a Hybrid Solar Heating and Cooling System for Different Configurations and Climatic Conditions," Energies, MDPI, vol. 14(4), pages 1-23, February.
    10. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    11. Rafał Figaj & Maciej Żołądek & Wojciech Goryl, 2020. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software," Energies, MDPI, vol. 13(14), pages 1-27, July.
    12. Yuan, Qiheng & Zhou, Keliang & Yao, Jing, 2020. "A new measure of wind power variability with implications for the optimal sizing of standalone wind power systems," Renewable Energy, Elsevier, vol. 150(C), pages 538-549.
    13. Gao, Shuang & Li, Hailong & Hou, Yichen & Yan, Jinyue, 2023. "Benefits of integrating power-to-heat assets in CHPs," Applied Energy, Elsevier, vol. 335(C).
    14. Cao, Karl-Kiên & Nitto, Alejandro Nicolás & Sperber, Evelyn & Thess, André, 2018. "Expanding the horizons of power-to-heat: Cost assessment for new space heating concepts with Wind Powered Thermal Energy Systems," Energy, Elsevier, vol. 164(C), pages 925-936.
    15. Maciej Żołądek & Alexandros Kafetzis & Rafał Figaj & Kyriakos Panopoulos, 2022. "Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    16. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    2. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    3. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    4. Vishwanathan, Gokul & Sculley, Julian P. & Fischer, Adam & Zhao, Ji-Cheng, 2018. "Techno-economic analysis of high-efficiency natural-gas generators for residential combined heat and power," Applied Energy, Elsevier, vol. 226(C), pages 1064-1075.
    5. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    6. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    7. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    8. Mirzabeiki, Vahid & Saghiri, Soroosh Sam, 2020. "From ambition to action: How to achieve integration in omni-channel?," Journal of Business Research, Elsevier, vol. 110(C), pages 1-11.
    9. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    10. Rödder, Maximilian & Frank, Lena & Kirschner, Daniel & Neef, Matthias & Adam, Mario, 2018. "EnergiBUS4home – Sustainable energy resourcing in low-energy buildings," Energy, Elsevier, vol. 159(C), pages 638-647.
    11. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    12. Johra, Hicham & Filonenko, Konstantin & Heiselberg, Per & Veje, Christian & Dall’Olio, Stefano & Engelbrecht, Kurt & Bahl, Christian, 2019. "Integration of a magnetocaloric heat pump in an energy flexible residential building," Renewable Energy, Elsevier, vol. 136(C), pages 115-126.
    13. Mariusz Szreder & Marek Miara, 2020. "Impact of Compressor Drive System Efficiency on Air Source Heat Pump Performance for Heating Hot Water," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    14. Marijanovic, Zorica & Theile, Philipp & Czock, Berit Hanna, 2022. "Value of short-term heating system flexibility – A case study for residential heat pumps on the German intraday market," Energy, Elsevier, vol. 249(C).
    15. Baeten, Brecht & Rogiers, Frederik & Helsen, Lieve, 2017. "Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response," Applied Energy, Elsevier, vol. 195(C), pages 184-195.
    16. Lygnerud, Kristina & Ottosson, Jonas & Kensby, Johan & Johansson, Linnea, 2021. "Business models combining heat pumps and district heating in buildings generate cost and emission savings," Energy, Elsevier, vol. 234(C).
    17. Connolly, D., 2017. "Heat Roadmap Europe: Quantitative comparison between the electricity, heating, and cooling sectors for different European countries," Energy, Elsevier, vol. 139(C), pages 580-593.
    18. Meha, Drilon & Pfeifer, Antun & Duić, Neven & Lund, Henrik, 2020. "Increasing the integration of variable renewable energy in coal-based energy system using power to heat technologies: The case of Kosovo," Energy, Elsevier, vol. 212(C).
    19. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    20. Zhang, Yichi & Johansson, Pär & Kalagasidis, Angela Sasic, 2021. "Techno-economic assessment of thermal energy storage technologies for demand-side management in low-temperature individual heating systems," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1486-1498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.