IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp141-148.html
   My bibliography  Save this article

Hourly electricity demand from an electric road system – A Swedish case study

Author

Listed:
  • Jelica, D.
  • Taljegard, M.
  • Thorson, L.
  • Johnsson, F.

Abstract

This study investigates the hourly electricity demand related to implementing an electric road system (ERS) on five Swedish roads with the highest traffic flows that connect the three largest cities in Sweden. The study also compares the energy demands and the CO2 mitigation potentials of the ERS with the use of carbon-based fuels to obtain the same transportation work, and extrapolates the results to all Swedish European- and National- (E- and N) roads. The hourly electricity demand along the roads are derived by linking 12 available measurement points for hourly road traffic volumes with 12,553 measurement points for the average daily traffic flows along the roads. The results show that applying an ERS to the five Swedish roads with the highest traffic flows can reduce by ∼20% the levels of CO2 emissions from the road transport sector, while increasing by less than 4% the hourly electricity demand on the peak dimensioning hour. Extending the ERS to all E- and N-roads would electrify almost half of the vehicle kilometers driven annually in Sweden, while increasing the load of the hourly peak electricity demand by only ∼10% on average.

Suggested Citation

  • Jelica, D. & Taljegard, M. & Thorson, L. & Johnsson, F., 2018. "Hourly electricity demand from an electric road system – A Swedish case study," Applied Energy, Elsevier, vol. 228(C), pages 141-148.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:141-148
    DOI: 10.1016/j.apenergy.2018.06.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918309140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2017. "Spacial and dynamic energy demand of the E39 highway – Implications on electrification options," Applied Energy, Elsevier, vol. 195(C), pages 681-692.
    2. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
    3. Ribeiro, Suzana K & Kobayashi, Shigeki & Beuthe, Michel & Gasca, Jorge & Greene, David & Lee, David S. & Muromachi, Yasunori & Newton, Peter J. & Plotkin, Steven & Sperling, Daniel & Wit, Ron & Zhou, , 2007. "Transportation and its Infrastructure," Institute of Transportation Studies, Working Paper Series qt98m5t1rv, Institute of Transportation Studies, UC Davis.
    4. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David I. Okorie, 2021. "A network analysis of electricity demand and the cryptocurrency markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 3093-3108, April.
    2. Michel Noussan & Giovanni Carioni & Francesco Davide Sanvito & Emanuela Colombo, 2019. "Urban Mobility Demand Profiles: Time Series for Cars and Bike-Sharing Use as a Resource for Transport and Energy Modeling," Data, MDPI, vol. 4(3), pages 1-12, July.
    3. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    4. Li, Yanning & Li, Xinwei & Jenn, Alan, 2022. "Evaluating the emission benefits of shared autonomous electric vehicle fleets: A case study in California," Applied Energy, Elsevier, vol. 323(C).
    5. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    6. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    7. Jose Juan Caceres-Hernandez & Gloria Martin-Rodriguez & Jonay Hernandez-Martin, 2022. "A proposal for measuring and comparing seasonal variations in hourly economic time series," Empirical Economics, Springer, vol. 62(4), pages 1995-2021, April.
    8. Erik Dahlquist & Fredrik Wallin & Koteshwar Chirumalla & Reza Toorajipour & Glenn Johansson, 2023. "Balancing Power in Sweden Using Different Renewable Resources, Varying Prices, and Storages Like Batteries in a Resilient Energy System," Energies, MDPI, vol. 16(12), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2019. "Electric Vehicles as Flexibility Management Strategy for the Electricity System—A Comparison between Different Regions of Europe," Energies, MDPI, vol. 12(13), pages 1-19, July.
    2. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2019. "Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study," Applied Energy, Elsevier, vol. 235(C), pages 1637-1650.
    3. Doluweera, Ganesh & Hahn, Fabian & Bergerson, Joule & Pruckner, Marco, 2020. "A scenario-based study on the impacts of electric vehicles on energy consumption and sustainability in Alberta," Applied Energy, Elsevier, vol. 268(C).
    4. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    5. Sehyeon Kim & Markus Holz & Soojin Park & Yongbeum Yoon & Eunchel Cho & Junsin Yi, 2021. "Future Options for Lightweight Photovoltaic Modules in Electrical Passenger Cars," Sustainability, MDPI, vol. 13(5), pages 1-7, February.
    6. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    7. Meyer, Ina & Kaniovski, Serguei & Scheffran, Jürgen, 2012. "Scenarios for regional passenger car fleets and their CO2 emissions," Energy Policy, Elsevier, vol. 41(C), pages 66-74.
    8. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    9. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    10. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    11. Christian Wankmüller & Maximilian Kunovjanek & Robert Gennaro Sposato & Gerald Reiner, 2020. "Selecting E-Mobility Transport Solutions for Mountain Rescue Operations," Energies, MDPI, vol. 13(24), pages 1-19, December.
    12. Daniel Rasbash & Kevin Joseph Dillman & Jukka Heinonen & Eyjólfur Ingi Ásgeirsson, 2023. "A National and Regional Greenhouse Gas Breakeven Assessment of EVs across North America," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    13. Cho, Joongkoo & Hu, Weihong, 2013. "Network-Based Simulation of Air Pollution Emissions Associated with Truck Operations," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 52(3).
    14. Banister, David, 2011. "Cities, mobility and climate change," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1538-1546.
    15. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    16. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    17. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    18. Jochem, Patrick & Doll, Claus & Fichtner, Wolf, 2016. "External costs of electric vehicles," MPRA Paper 91602, University Library of Munich, Germany.
    19. Sheinbaum-Pardo, Claudia & Chávez-Baeza, Carlos, 2011. "Fuel economy of new passenger cars in Mexico: Trends from 1988 to 2008 and prospects," Energy Policy, Elsevier, vol. 39(12), pages 8153-8162.
    20. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:141-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.