Solution for the future smart energy system: A polygeneration plant based on reversible solid oxide cells and biomass gasification producing either electrofuel or power
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.02.124
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Henriksen, Ulrik & Ahrenfeldt, Jesper & Jensen, Torben Kvist & Gøbel, Benny & Bentzen, Jens Dall & Hindsgaul, Claus & Sørensen, Lasse Holst, 2006. "The design, construction and operation of a 75kW two-stage gasifier," Energy, Elsevier, vol. 31(10), pages 1542-1553.
- Clausen, Lasse R. & Houbak, Niels & Elmegaard, Brian, 2010. "Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water," Energy, Elsevier, vol. 35(5), pages 2338-2347.
- Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
- Clausen, Lasse R., 2017. "Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification," Energy, Elsevier, vol. 125(C), pages 327-336.
- Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
- Clausen, Lasse R., 2015. "Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification," Energy, Elsevier, vol. 85(C), pages 94-104.
- Lythcke-Jørgensen, Christoffer & Clausen, Lasse Røngaard & Algren, Loui & Hansen, Anders Bavnhøj & Münster, Marie & Gadsbøll, Rasmus Østergaard & Haglind, Fredrik, 2017. "Optimization of a flexible multi-generation system based on wood chip gasification and methanol production," Applied Energy, Elsevier, vol. 192(C), pages 337-359.
- Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
- Clausen, Lasse R. & Elmegaard, Brian & Ahrenfeldt, Jesper & Henriksen, Ulrik, 2011. "Thermodynamic analysis of small-scale dimethyl ether (DME) and methanol plants based on the efficient two-stage gasifier," Energy, Elsevier, vol. 36(10), pages 5805-5814.
- Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
- Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sigurjónsson, Hafþór Ægir & Cook, David & Davíðsdóttir, Brynhildur & Bogason, Sigurður G., 2021. "A life-cycle analysis of deep enhanced geothermal systems – The case studies of Reykjanes, Iceland and Vendenheim, France," Renewable Energy, Elsevier, vol. 177(C), pages 1076-1086.
- Antar, Elie & Robert, Etienne, 2024. "Thermodynamic analysis of small-scale polygeneration systems producing natural gas, electricity, heat, and carbon dioxide from biomass," Energy, Elsevier, vol. 290(C).
- Segurado, R. & Pereira, S. & Correia, D. & Costa, M., 2019. "Techno-economic analysis of a trigeneration system based on biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 501-514.
- Gadsbøll, Rasmus Østergaard & Clausen, Lasse Røngaard & Thomsen, Tobias Pape & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2019. "Flexible TwoStage biomass gasifier designs for polygeneration operation," Energy, Elsevier, vol. 166(C), pages 939-950.
- Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb," Energy, Elsevier, vol. 155(C), pages 824-837.
- Butera, Giacomo & Fendt, Sebastian & Jensen, Søren H. & Ahrenfeldt, Jesper & Clausen, Lasse R., 2020. "Flexible methanol production units coupling solid oxide cells and thermochemical biomass conversion via different gasification technologies," Energy, Elsevier, vol. 208(C).
- Butera, Giacomo & Gadsbøll, Rasmus Østergaard & Ravenni, Giulia & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Clausen, Lasse Røngaard, 2020. "Thermodynamic analysis of methanol synthesis combining straw gasification and electrolysis via the low temperature circulating fluid bed gasifier and a char bed gas cleaning unit," Energy, Elsevier, vol. 199(C).
- Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
- Wang, Ligang & Zhang, Yumeng & Li, Chengzhou & Pérez-Fortes, Mar & Lin, Tzu-En & Maréchal, François & Van herle, Jan & Yang, Yongping, 2020. "Triple-mode grid-balancing plants via biomass gasification and reversible solid-oxide cell stack: Concept and thermodynamic performance," Applied Energy, Elsevier, vol. 280(C).
- Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
- Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
- Khojaste Effatpanah, Saeed & Rahbari, Hamid Reza & Ahmadi, Mohammad H. & Farzaneh, Ali, 2023. "Green hydrogen production and utilization in a novel SOFC/GT-based zero-carbon cogeneration system: A thermodynamic evaluation," Renewable Energy, Elsevier, vol. 219(P2).
- Ramadhani, Farah & Hussain, M.A. & Mokhlis, Hazlie & Fazly, Muhamad & Ali, Jarinah Mohd., 2019. "Evaluation of solid oxide fuel cell based polygeneration system in residential areas integrating with electric charging and hydrogen fueling stations for vehicles," Applied Energy, Elsevier, vol. 238(C), pages 1373-1388.
- Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
- Bianchi, F.R. & Bosio, B. & Conte, F. & Massucco, S. & Mosaico, G. & Natrella, G. & Saviozzi, M., 2023. "Modelling and optimal management of renewable energy communities using reversible solid oxide cells," Applied Energy, Elsevier, vol. 334(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
- Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
- Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
- Matteo Giacomo Prina & Giampaolo Manzolini & David Moser & Roberto Vaccaro & Wolfram Sparber, 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios," Energies, MDPI, vol. 13(12), pages 1-22, June.
- Jacobson, Mark Z., 2021. "The cost of grid stability with 100 % clean, renewable energy for all purposes when countries are isolated versus interconnected," Renewable Energy, Elsevier, vol. 179(C), pages 1065-1075.
- Clausen, Lasse R., 2017. "Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification," Energy, Elsevier, vol. 125(C), pages 327-336.
- Djørup, Søren & Thellufsen, Jakob Zinck & Sorknæs, Peter, 2018. "The electricity market in a renewable energy system," Energy, Elsevier, vol. 162(C), pages 148-157.
- Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
- Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
- Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
- Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
- Clausen, Lasse R. & Butera, Giacomo & Jensen, Søren Højgaard, 2019. "High efficiency SNG production from biomass and electricity by integrating gasification with pressurized solid oxide electrolysis cells," Energy, Elsevier, vol. 172(C), pages 1117-1131.
- Doepfert, Markus & Castro, Rui, 2021. "Techno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: The case of Portugal," Renewable Energy, Elsevier, vol. 165(P1), pages 491-503.
- Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
- Prina, Matteo Giacomo & Fanali, Lorenzo & Manzolini, Giampaolo & Moser, David & Sparber, Wolfram, 2018. "Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study," Energy, Elsevier, vol. 160(C), pages 33-43.
- Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
More about this item
Keywords
Polygeneration; Electrolysis; Fuel cell; Gasification; Techno-economic analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:323-337. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.