IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp1448-1461.html
   My bibliography  Save this article

Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation

Author

Listed:
  • D'Alessandro, Antonella
  • Pisello, Anna Laura
  • Fabiani, Claudia
  • Ubertini, Filippo
  • Cabeza, Luisa F.
  • Cotana, Franco

Abstract

Energy performance in buildings and integrated systems represents a key aspect influencing anthropogenic emissions worldwide. Therefore, novel multifunctional materials for improving envelope thermo-energy efficiency through passive techniques are presently attracting notable researchers’ effort. In this view, the integration of phase change materials (PCMs) into structural concrete showed interesting effects in enhancing the material thermal capacity while keeping proper structural strength. This work presents a multiphysics thermo-mechanical investigation concerning innovative concretes incorporating paraffin-based PCM suitable for structural-thermal multifunctional applications in high-energy efficiency building envelopes. Both classic microPCM-capsules and the novel more pioneering macroPCM-capsules with 18 °C phase transition temperature are used for the new composite preparation. Results confirm the thermal benefits of PCM and demonstrate that the addition of PCM reduces the mass density of concrete by almost twice PCMs weight. Average compressive strength decreases with increasing the amount of PCM, but its coefficient of variation is not as negatively affected, which is promising in terms of structural reliability. Indeed, a 1% weight content of microPCM and macroPCM results in reduced coefficients of variation of the compressive strength, determining an increase in characteristic compressive strength. This benefit might be associated to both a filler effect of the PCM and to a positive thermal interaction between inclusions and cement hydration products. The multifunctional analysis showed promising performance of PCM-based macro-capsules as aggregates, even if their concentration is relatively minor than the classic micro-capsules already acknowledged as effective additives for high energy efficient cement-based materials.

Suggested Citation

  • D'Alessandro, Antonella & Pisello, Anna Laura & Fabiani, Claudia & Ubertini, Filippo & Cabeza, Luisa F. & Cotana, Franco, 2018. "Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation," Applied Energy, Elsevier, vol. 212(C), pages 1448-1461.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1448-1461
    DOI: 10.1016/j.apenergy.2018.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191830014X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garshasbi, Samira & Kurnitski, Jarek & Mohammadi, Yousef, 2016. "A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings," Applied Energy, Elsevier, vol. 179(C), pages 626-637.
    2. Barreneche, Camila & de Gracia, Alvaro & Serrano, Susana & Elena Navarro, M. & Borreguero, Ana María & Inés Fernández, A. & Carmona, Manuel & Rodriguez, Juan Francisco & Cabeza, Luisa F., 2013. "Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials," Applied Energy, Elsevier, vol. 109(C), pages 421-427.
    3. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    4. Cui, Hongzhi & Tang, Waiching & Qin, Qinghua & Xing, Feng & Liao, Wenyu & Wen, Haibo, 2017. "Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball," Applied Energy, Elsevier, vol. 185(P1), pages 107-118.
    5. Alam, M. & Singh, H. & Suresh, S. & Redpath, D.A.G., 2017. "Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings," Applied Energy, Elsevier, vol. 188(C), pages 1-8.
    6. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    7. Karmellos, M. & Kiprakis, A. & Mavrotas, G., 2015. "A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies," Applied Energy, Elsevier, vol. 139(C), pages 131-150.
    8. Zhang, Zhengguo & Shi, Guoquan & Wang, Shuping & Fang, Xiaoming & Liu, Xiaohong, 2013. "Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material," Renewable Energy, Elsevier, vol. 50(C), pages 670-675.
    9. Sandoval, Diego & Goffin, Philippe & Leibundgut, Hansjürg, 2017. "How low exergy buildings and distributed electricity storage can contribute to flexibility within the demand side," Applied Energy, Elsevier, vol. 187(C), pages 116-127.
    10. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    11. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    12. Xu, Biwan & Li, Zongjin, 2013. "Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage," Applied Energy, Elsevier, vol. 105(C), pages 229-237.
    13. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    14. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Huang, Zhijia, 2017. "Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties," Applied Energy, Elsevier, vol. 187(C), pages 62-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Belli & Alessandra Mobili & Tiziano Bellezze & Francesca Tittarelli & Paulo Cachim, 2018. "Evaluating the Self-Sensing Ability of Cement Mortars Manufactured with Graphene Nanoplatelets, Virgin or Recycled Carbon Fibers through Piezoresistivity Tests," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    2. Wang, Mei & Liu, Peng & Liu, Lang & Geng, Mingli & Wang, Yu & Zhang, Zhefeng, 2022. "The impact of the backfill direction on the backfill cooling performance using phase change materials in mine cooling," Renewable Energy, Elsevier, vol. 201(P1), pages 1026-1037.
    3. Al-Yasiri, Qudama & Szabó, Márta, 2022. "Energetic and thermal comfort assessment of phase change material passively incorporated building envelope in severe hot Climate: An experimental study," Applied Energy, Elsevier, vol. 314(C).
    4. Esequiel Mesquita & Ana Mafalda Matos & Israel Sousa & Mylene Vieira & Luís P. M. Santos, 2023. "Studying the Incorporation of Multi-Walled Carbon Nanotubes in High-Performance Concrete," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    5. Claudia Fabiani & Anna Laura Pisello & Marco Barbanera & Luisa F. Cabeza & Franco Cotana, 2019. "Assessing the Potentiality of Animal Fat Based-Bio Phase Change Materials (PCM) for Building Applications: An Innovative Multipurpose Thermal Investigation," Energies, MDPI, vol. 12(6), pages 1-18, March.
    6. Reza Khakian & Mehrdad Karimimoshaver & Farshid Aram & Soghra Zoroufchi Benis & Amir Mosavi & Annamaria R. Varkonyi-Koczy, 2020. "Modeling Nearly Zero Energy Buildings for Sustainable Development in Rural Areas," Energies, MDPI, vol. 13(10), pages 1-19, May.
    7. Sandra Cunha & Manuel Parente & Joaquim Tinoco & José Aguiar, 2024. "Leveraging Machine Learning for Designing Sustainable Mortars with Non-Encapsulated PCMs," Sustainability, MDPI, vol. 16(16), pages 1-20, August.
    8. Lin, Yaxue & Zhu, Chuqiao & Alva, Guruprasad & Fang, Guiyin, 2018. "Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage," Applied Energy, Elsevier, vol. 231(C), pages 494-501.
    9. Yumei Wang & Jinyan Wang & Zhiheng Deng & Jianzhuang Xiao, 2023. "Studying Thermal and Mechanical Properties of Recycled Concrete by Using Ceramic Aggregate," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
    10. Maleki, Mahdi & Imani, Abolhassan & Ahmadi, Rouhollah & Banna Motejadded Emrooz, Hosein & Beitollahi, Ali, 2020. "Low-cost carbon foam as a practical support for organic phase change materials in thermal management," Applied Energy, Elsevier, vol. 258(C).
    11. Sandra Cunha & Antonella Sarcinella & José Aguiar & Mariaenrica Frigione, 2023. "Perspective on the Development of Energy Storage Technology Using Phase Change Materials in the Construction Industry: A Review," Energies, MDPI, vol. 16(12), pages 1-32, June.
    12. Cárdenas-Ramírez, Carolina & Gómez, Maryory A. & Jaramillo, Franklin & Cardona, Andrés F. & Fernández, Angel G. & Cabeza, Luisa F., 2022. "Experimental steady-state and transient thermal performance of materials for thermal energy storage in building applications: From powder SS-PCMs to SS-PCM-based acrylic plaster," Energy, Elsevier, vol. 250(C).
    13. Han, Weifang & Ge, Chunhua & Zhang, Rui & Ma, Zhiyan & Wang, Lixia & Zhang, Xiangdong, 2019. "Boron nitride foam as a polymer alternative in packaging phase change materials: Synthesis, thermal properties and shape stability," Applied Energy, Elsevier, vol. 238(C), pages 942-951.
    14. Sih Ying Kong & Xu Yang & Suvash Chandra Paul & Leong Sing Wong & Branko Šavija, 2019. "Thermal Response of Mortar Panels with Different Forms of Macro-Encapsulated Phase Change Materials: A Finite Element Study," Energies, MDPI, vol. 12(13), pages 1-15, July.
    15. Dervilla Niall & Roger West, 2024. "Development of Concrete Façade Sandwich Panels Incorporating Phase Change Materials," Energies, MDPI, vol. 17(12), pages 1-28, June.
    16. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    2. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    3. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    4. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    6. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
    7. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2016. "Advanced energy storage materials for building applications and their thermal performance characterization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 916-928.
    8. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    9. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    10. Zhu, Yejun & Huang, Baoling & Wu, Jingshen, 2014. "Optimization of filler distribution for organic phase change material composites: Numerical investigation and entropy analysis," Applied Energy, Elsevier, vol. 132(C), pages 543-550.
    11. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    12. Li, Huiqiang & Chen, Huisu & Li, Xiangyu & Sanjayan, Jay G., 2014. "Development of thermal energy storage composites and prevention of PCM leakage," Applied Energy, Elsevier, vol. 135(C), pages 225-233.
    13. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
    14. Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Fernández, Ana Inés & Cabeza, Luisa F., 2016. "Mechanical response evaluation of microcapsules from different slurries," Renewable Energy, Elsevier, vol. 85(C), pages 732-739.
    15. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    16. Sebastian Ammann & Andreas Ammann & Rebecca Ravotti & Ludger J. Fischer & Anastasia Stamatiou & Jörg Worlitschek, 2018. "Effective Separation of a Water in Oil Emulsion from a Direct Contact Latent Heat Storage System," Energies, MDPI, vol. 11(9), pages 1-15, August.
    17. AL-Saadi, Saleh Nasser & Zhai, Zhiqiang (John), 2013. "Modeling phase change materials embedded in building enclosure: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 659-673.
    18. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    19. Xu, Biwan & Li, Zongjin, 2014. "Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites," Energy, Elsevier, vol. 72(C), pages 371-380.
    20. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1448-1461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.