IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v207y2017icp613-623.html
   My bibliography  Save this article

A total heat recovery system between the flue gas and oxidizing air of a gas-fired boiler using a non-contact total heat exchanger

Author

Listed:
  • Shang, Sheng
  • Li, Xianting
  • Chen, Wei
  • Wang, Baolong
  • Shi, Wenxing

Abstract

Recovering heat from the flue gas of a gas-fired boiler can both improve boiler efficiency and decrease pollutant emissions. To improve the efficiency of the gas-fired boiler in a more cost effective and higher efficient way, a non-contact total heat recovery (NCHR) system is proposed for recovering heat from flue gas for use in heating and humidifying the oxidizing air of the boiler. A mathematical model of a boiler with an NCHR system was established, and the performance of the NCHR system was compared with that of other heat recovery systems. It is shown that the efficiency of a boiler with an NCHR system can reach 103.4% for an inlet oxidizing air temperature of 0°C, which is 13.4% higher than the efficiency of a traditional boiler. According to the case study, the energy saving potential of a boiler with an NCHR system is 12.97% compared to that of a traditional boiler. As for the economic analysis, the payback period of a boiler with an NCHR system to traditional boiler and the condensing boiler is 1year and 3years, respectively. In addition, the operation cost of an NCHR system is less than that of a boiler with an absorption heat pump for heat recovery (AHPB) system, indicating that the NCHR system has obvious economic benefits.

Suggested Citation

  • Shang, Sheng & Li, Xianting & Chen, Wei & Wang, Baolong & Shi, Wenxing, 2017. "A total heat recovery system between the flue gas and oxidizing air of a gas-fired boiler using a non-contact total heat exchanger," Applied Energy, Elsevier, vol. 207(C), pages 613-623.
  • Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:613-623
    DOI: 10.1016/j.apenergy.2017.05.169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917307262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Maolin & Zhao, Xiling & Fu, Lin & Zhang, Shigang, 2017. "Performance study and application of new coal-fired boiler flue gas heat recovery system," Applied Energy, Elsevier, vol. 188(C), pages 121-129.
    2. Zaporowski, Boleslaw & Szczerbowski, Radoslaw, 2003. "Energy analysis of technological systems of natural gas fired combined heat-and-power plants," Applied Energy, Elsevier, vol. 75(1-2), pages 43-50, May.
    3. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    4. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    5. Yang, Zhao & Cheng, Heng & Wu, Xi & Chen, Yiguang, 2011. "Research on improving energy efficiency and the annual distributing structure in electricity and gas consumption by extending use of GEHP," Energy Policy, Elsevier, vol. 39(9), pages 5192-5202, September.
    6. Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
    7. Weber, C & Gebhardt, B & Fahl, U, 2002. "Market transformation for energy efficient technologies — success factors and empirical evidence for gas condensing boilers," Energy, Elsevier, vol. 27(3), pages 287-315.
    8. Xu, Gang & Huang, Shengwei & Yang, Yongping & Wu, Ying & Zhang, Kai & Xu, Cheng, 2013. "Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas," Applied Energy, Elsevier, vol. 112(C), pages 907-917.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong-Wei Shi & Hai-Peng Wang, 2023. "Research on Full Premixed Combustion and Emission Characteristics of Non-Electric Gas Boiler," Energies, MDPI, vol. 16(21), pages 1-28, November.
    2. Jussi Saari & Ekaterina Sermyagina & Juha Kaikko & Markus Haider & Marcelo Hamaguchi & Esa Vakkilainen, 2021. "Evaluation of the Energy Efficiency Improvement Potential through Back-End Heat Recovery in the Kraft Recovery Boiler," Energies, MDPI, vol. 14(6), pages 1-21, March.
    3. Hinrichs, Jörn & Felsmann, Daniel & Schweitzer-De Bortoli, Stefan & Tomczak, Heinz-Jörg & Pitsch, Heinz, 2018. "Numerical and experimental investigation of pollutant formation and emissions in a full-scale cylindrical heating unit of a condensing gas boiler," Applied Energy, Elsevier, vol. 229(C), pages 977-989.
    4. Liu, Fengguo & Zheng, Longfeng & Zhang, Rui, 2020. "Emissions and thermal efficiency for premixed burners in a condensing gas boiler," Energy, Elsevier, vol. 202(C).
    5. Lianbo Mu & Suilin Wang & Guichang Liu & Junhui Lu & Yuncheng Lan & Liqiu Zhao & Jincheng Liu, 2023. "On-Site Experimental Study on Low-Temperature Deep Waste Heat Recovery of Actual Flue Gas from the Reformer of Hydrogen Production," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    6. Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.
    7. Yang, Bo & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Wei, Maolin & Guo, Dongcai, 2020. "Techno-economic study of full-open absorption heat pump applied to flue gas total heat recovery," Energy, Elsevier, vol. 190(C).
    8. Zhang, Qunli & Niu, Yu & Yang, Xiaohu & Sun, Donghan & Xiao, Xin & Shen, Qi & Wang, Gang, 2020. "Experimental study of flue gas condensing heat recovery synergized with low NOx emission system," Applied Energy, Elsevier, vol. 269(C).
    9. Chen, Wei & Shi, Wenxing & Li, Xianting & Wang, Baolong & Cao, Yang, 2020. "Application of optimization method based on discretized thermal energy in condensing heat recovery system of combined heat and power plant," Energy, Elsevier, vol. 213(C).
    10. Guo, Xiang & Zhang, Yanbin & Guo, Qianqian & Zhang, Rui & Wang, Caiyu & Yan, Beibei & Lin, Fawei & Chen, Guanyi & Hou, Li'an, 2021. "Evaluation on energetic and economic benefits of the coupling anaerobic digestion and gasification from agricultural wastes," Renewable Energy, Elsevier, vol. 176(C), pages 494-503.
    11. Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
    12. Wang, Jingyi & Hua, Jing & Fu, Lin & Zhou, Ding, 2020. "Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery," Energy, Elsevier, vol. 198(C).
    13. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Li, Yanzhe & Liang, Zhaojun & Yang, Yurong, 2018. "Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery," Applied Energy, Elsevier, vol. 228(C), pages 2080-2089.
    14. Alka Mihelić-Bogdanić & Ivana Špelić, 2022. "Energy Efficiency Optimization in Polyisoprene Footwear Production," Sustainability, MDPI, vol. 14(17), pages 1-26, August.
    15. Rolandas Paulauskas & Indrek Jõgi & Nerijus Striūgas & Dainius Martuzevičius & Kalev Erme & Jüri Raud & Martynas Tichonovas, 2019. "Application of Non-Thermal Plasma for NOx Reduction in the Flue Gases," Energies, MDPI, vol. 12(20), pages 1-13, October.
    16. Chen, Yusheng & Guo, Tong & Kainz, Josef & Kriegel, Martin & Gaderer, Matthias, 2022. "Design of a biomass-heating network with an integrated heat pump: A simulation-based multi-objective optimization framework," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
    2. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Li, Yanzhe & Liang, Zhaojun & Yang, Yurong, 2018. "Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery," Applied Energy, Elsevier, vol. 228(C), pages 2080-2089.
    3. Chen, Wei & Shi, Wenxing & Li, Xianting & Wang, Baolong & Cao, Yang, 2020. "Application of optimization method based on discretized thermal energy in condensing heat recovery system of combined heat and power plant," Energy, Elsevier, vol. 213(C).
    4. Cui, Lin & Song, Xiangda & Li, Yuzhong & Wang, Yang & Feng, Yupeng & Yan, Lifan & Dong, Yong, 2018. "Synergistic capture of fine particles in wet flue gas through cooling and condensation," Applied Energy, Elsevier, vol. 225(C), pages 656-667.
    5. Wang, Xiang & Zhuo, Jiankun & Liu, Jianmin & Li, Shuiqing, 2020. "Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas," Applied Energy, Elsevier, vol. 261(C).
    6. Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
    7. Wang, Jingyi & Hua, Jing & Fu, Lin & Zhou, Ding, 2020. "Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery," Energy, Elsevier, vol. 198(C).
    8. Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
    9. Jiayou Liu & Xiaoyun Gong & Wenhua Zhang & Fengzhong Sun & Qingbiao Wang, 2020. "Experimental Study on a Flue Gas Waste Heat Cascade Recovery System under Variable Working Conditions," Energies, MDPI, vol. 13(2), pages 1-19, January.
    10. Zhang, Qunli & Niu, Yu & Yang, Xiaohu & Sun, Donghan & Xiao, Xin & Shen, Qi & Wang, Gang, 2020. "Experimental study of flue gas condensing heat recovery synergized with low NOx emission system," Applied Energy, Elsevier, vol. 269(C).
    11. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    12. Syed Safeer Mehdi Shamsi & Assmelash A. Negash & Gyu Baek Cho & Young Min Kim, 2019. "Waste Heat and Water Recovery System Optimization for Flue Gas in Thermal Power Plants," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    13. Xiao, Pengcheng & Zhang, Yanping & Wang, Yuanjing & Wang, Jizhou, 2019. "Analysis of an improved economizer system for active control of the coal-fired boiler flue gas temperature," Energy, Elsevier, vol. 170(C), pages 185-198.
    14. Ma, Youfu & Wang, Ziwen & Lyu, Junfu & Wang, Zirui, 2020. "Techno-economic evaluation of the novel hot air recirculation process for exhaust heat recovery from a 600 MW hard-coal-fired boiler," Energy, Elsevier, vol. 200(C).
    15. Chen, Wei-Hsin & Carrera Uribe, Manuel & Kwon, Eilhann E. & Lin, Kun-Yi Andrew & Park, Young-Kwon & Ding, Lu & Saw, Lip Huat, 2022. "A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Lin, Xiaolong & Li, Qinlun & Wang, Lukai & Guo, Yifan & Liu, Yinhe, 2020. "Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 201(C).
    17. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    18. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    19. Yang, Jing & Zhang, Zhiyong & Yang, Mingwan & Chen, Jiayu, 2019. "Optimal operation strategy of green supply chain based on waste heat recovery quality," Energy, Elsevier, vol. 183(C), pages 599-605.
    20. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:613-623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.