IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p1881-d218109.html
   My bibliography  Save this article

Waste Heat and Water Recovery System Optimization for Flue Gas in Thermal Power Plants

Author

Listed:
  • Syed Safeer Mehdi Shamsi

    (Environment & Energy Mechanical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
    Research Division for Environmental and Energy Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 305-343, Korea)

  • Assmelash A. Negash

    (Environment & Energy Mechanical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
    Research Division for Environmental and Energy Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 305-343, Korea)

  • Gyu Baek Cho

    (Research Division for Environmental and Energy Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 305-343, Korea)

  • Young Min Kim

    (Research Division for Environmental and Energy Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 305-343, Korea)

Abstract

Fossil-fueled power plants present a problem of significant water consumption, carbon dioxide emissions, and environmental pollution. Several techniques have been developed to utilize flue gas, which can help solve these problems. Among these, the ones focusing on energy extraction beyond the dew point of the moisture present within the flue gas are quite attractive. In this study, a novel waste heat and water recovery system (WHWRS) composed of an organic Rankine cycle (ORC) and cooling cycles using singular working fluid accompanied by phase change was proposed and optimized for maximum power output. Furthermore, WHWRS configurations were analyzed for fixed water yield and fixed ambient temperature, covering possible trade-off scenarios between power loss and the number of stages as per desired yields of water recovery at ambient temperatures in a practical range. For a 600 MW power plant with 16% water vapor volume in flue gas at 150 °C, the WHWRS can produce 4–6 MWe while recovering 50% water by cooling the flue gas to 40 °C at an ambient temperature of 20 °C. Pragmatic results and design flexibility, while utilizing single working fluid, makes this proposed system a desirable candidate for practical application.

Suggested Citation

  • Syed Safeer Mehdi Shamsi & Assmelash A. Negash & Gyu Baek Cho & Young Min Kim, 2019. "Waste Heat and Water Recovery System Optimization for Flue Gas in Thermal Power Plants," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:1881-:d:218109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/1881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/1881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Maolin & Zhao, Xiling & Fu, Lin & Zhang, Shigang, 2017. "Performance study and application of new coal-fired boiler flue gas heat recovery system," Applied Energy, Elsevier, vol. 188(C), pages 121-129.
    2. Kim, Tae Young & Kim, Junghwan, 2018. "Assessment of the energy recovery potential of a thermoelectric generator system for passenger vehicles under various drive cycles," Energy, Elsevier, vol. 143(C), pages 363-371.
    3. Negash, Assmelash & Kim, Young Min & Shin, Dong Gil & Cho, Gyu Baek, 2018. "Optimization of organic Rankine cycle used for waste heat recovery of construction equipment engine with additional waste heat of hydraulic oil cooler," Energy, Elsevier, vol. 143(C), pages 797-811.
    4. Minh Quan Duong & Thai Dinh Pham & Thang Trung Nguyen & Anh Tuan Doan & Hai Van Tran, 2019. "Determination of Optimal Location and Sizing of Solar Photovoltaic Distribution Generation Units in Radial Distribution Systems," Energies, MDPI, vol. 12(1), pages 1-24, January.
    5. Usman, Muhammad & Imran, Muhammad & Yang, Youngmin & Lee, Dong Hyun & Park, Byung-Sik, 2017. "Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions," Energy, Elsevier, vol. 123(C), pages 353-366.
    6. Shuangchen, Ma & Jin, Chai & Kunling, Jiao & Lan, Ma & Sijie, Zhu & Kai, Wu, 2017. "Environmental influence and countermeasures for high humidity flue gas discharging from power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 225-235.
    7. Thang Trung Nguyen & Bach Hoang Dinh & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "A Novel Algorithm for Optimal Operation of Hydrothermal Power Systems under Considering the Constraints in Transmission Networks," Energies, MDPI, vol. 11(1), pages 1-21, January.
    8. Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
    9. Thang Trung Nguyen & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "Modified Differential Evolution Algorithm: A Novel Approach to Optimize the Operation of Hydrothermal Power Systems while Considering the Different Constraints and Valve Point Loading Effects," Energies, MDPI, vol. 11(3), pages 1-30, March.
    10. Xu, Z.Y. & Mao, H.C. & Liu, D.S. & Wang, R.Z., 2018. "Waste heat recovery of power plant with large scale serial absorption heat pumps," Energy, Elsevier, vol. 165(PB), pages 1097-1105.
    11. Walraven, Daniël & Laenen, Ben & D'haeseleer, William, 2015. "Economic system optimization of air-cooled organic Rankine cycles powered by low-temperature geothermal heat sources," Energy, Elsevier, vol. 80(C), pages 104-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Symes & Tchable-Nan Djaname & Michael Deligant & Emilie Sauret, 2021. "Design and Optimization of a Radial Inflow Turbine for Use with a Low Temperature ORC," Energies, MDPI, vol. 14(24), pages 1-16, December.
    2. Elgharbawy, Abdallah S. & Ali, Rehab M., 2022. "Techno-economic assessment of the biodiesel production using natural minerals rocks as a heterogeneous catalyst via conventional and ultrasonic techniques," Renewable Energy, Elsevier, vol. 191(C), pages 161-175.
    3. Young-Min Kim & Assmelash Negash & Syed Safeer Mehdi Shamsi & Dong-Gil Shin & Gyubaek Cho, 2021. "Experimental Study of a Lab-Scale Organic Rankine Cycle System for Heat and Water Recovery from Flue Gas in Thermal Power Plants," Energies, MDPI, vol. 14(14), pages 1-13, July.
    4. Lianbo Mu & Suilin Wang & Guichang Liu & Junhui Lu & Yuncheng Lan & Liqiu Zhao & Jincheng Liu, 2023. "On-Site Experimental Study on Low-Temperature Deep Waste Heat Recovery of Actual Flue Gas from the Reformer of Hydrogen Production," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    5. Shidan Chi & Tao Luan & Yan Liang & Xundong Hu & Yan Gao, 2020. "Analysis and Evaluation of Multi-Energy Cascade Utilization System for Ultra-Supercritical Units," Energies, MDPI, vol. 13(15), pages 1-13, August.
    6. Chen, Yusheng & Guo, Tong & Kainz, Josef & Kriegel, Martin & Gaderer, Matthias, 2022. "Design of a biomass-heating network with an integrated heat pump: A simulation-based multi-objective optimization framework," Applied Energy, Elsevier, vol. 326(C).
    7. Zongming Yang & Victoria Kornienko & Mykola Radchenko & Andrii Radchenko & Roman Radchenko, 2022. "Research of Exhaust Gas Boiler Heat Exchange Surfaces with Reduced Corrosion When Water-Fuel Emulsion Combustion," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    8. Luqing Zhang & Aikang Chen & Han Gu & Xitian Wang & Da Xie & Chenghong Gu, 2019. "Planning of the Multi-Energy Circular System Coupled with Waste Processing Base: A Case from China," Energies, MDPI, vol. 12(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young-Min Kim & Assmelash Negash & Syed Safeer Mehdi Shamsi & Dong-Gil Shin & Gyubaek Cho, 2021. "Experimental Study of a Lab-Scale Organic Rankine Cycle System for Heat and Water Recovery from Flue Gas in Thermal Power Plants," Energies, MDPI, vol. 14(14), pages 1-13, July.
    2. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D’haeseleer, William, 2019. "Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles," Applied Energy, Elsevier, vol. 242(C), pages 716-731.
    3. Wooyoung Jeon & Chul-Yong Lee, 2019. "Estimating the Cost of Solar Generation Uncertainty and the Impact of Collocated Energy Storage: The Case of Korea," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    4. Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
    5. Shang, Sheng & Li, Xianting & Chen, Wei & Wang, Baolong & Shi, Wenxing, 2017. "A total heat recovery system between the flue gas and oxidizing air of a gas-fired boiler using a non-contact total heat exchanger," Applied Energy, Elsevier, vol. 207(C), pages 613-623.
    6. Zelan Li & Yijia Cao & Le Van Dai & Xiaoliang Yang & Thang Trung Nguyen, 2019. "Finding Solutions for Optimal Reactive Power Dispatch Problem by a Novel Improved Antlion Optimization Algorithm," Energies, MDPI, vol. 12(15), pages 1-31, August.
    7. Thanh Long Duong & Phuong Duy Nguyen & Van-Duc Phan & Dieu Ngoc Vo & Thang Trung Nguyen, 2019. "Optimal Load Dispatch in Competitive Electricity Market by Using Different Models of Hopfield Lagrange Network," Energies, MDPI, vol. 12(15), pages 1-24, July.
    8. Shiqi Wang & Zhongyuan Yuan, 2020. "A Hot Water Split-Flow Dual-Pressure Strategy to Improve System Performance for Organic Rankine Cycle," Energies, MDPI, vol. 13(13), pages 1-21, June.
    9. Wang, Haichao & Hua, Pengmin & Wu, Xiaozhou & Zhang, Ruoyu & Granlund, Katja & Li, Ji & Zhu, Yingjie & Lahdelma, Risto & Teppo, Esa & Yu, Li, 2022. "Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system," Energy, Elsevier, vol. 250(C).
    10. Zhang, Qunli & Niu, Yu & Yang, Xiaohu & Sun, Donghan & Xiao, Xin & Shen, Qi & Wang, Gang, 2020. "Experimental study of flue gas condensing heat recovery synergized with low NOx emission system," Applied Energy, Elsevier, vol. 269(C).
    11. Cui, Lin & Song, Xiangda & Li, Yuzhong & Wang, Yang & Feng, Yupeng & Yan, Lifan & Dong, Yong, 2018. "Synergistic capture of fine particles in wet flue gas through cooling and condensation," Applied Energy, Elsevier, vol. 225(C), pages 656-667.
    12. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Li, Yanzhe & Liang, Zhaojun & Yang, Yurong, 2018. "Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery," Applied Energy, Elsevier, vol. 228(C), pages 2080-2089.
    13. Wang, Xiang & Zhuo, Jiankun & Liu, Jianmin & Li, Shuiqing, 2020. "Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas," Applied Energy, Elsevier, vol. 261(C).
    14. Chen, Wei & Shi, Wenxing & Li, Xianting & Wang, Baolong & Cao, Yang, 2020. "Application of optimization method based on discretized thermal energy in condensing heat recovery system of combined heat and power plant," Energy, Elsevier, vol. 213(C).
    15. Wen, Xin & Sun, Yuanliang & Tan, Qiaofeng & Tang, Zhengyang & Wang, Zhenni & Liu, Zhehua & Ding, Ziyu, 2022. "Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit," Applied Energy, Elsevier, vol. 306(PA).
    16. Wei Sun & Yufei Hou & Lanjiang Guo, 2018. "Analyzing and Forecasting Energy Consumption in China’s Manufacturing Industry and Its Subindustries," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
    17. Zhao, Ying-Kun & Lei, Biao & Wu, Yu-Ting & Zhi, Rui-Ping & Wang, Wei & Guo, Hang & Ma, Chong-Fang, 2018. "Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons," Energy, Elsevier, vol. 165(PB), pages 769-775.
    18. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    19. Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
    20. Jussi Saari & Ekaterina Sermyagina & Juha Kaikko & Markus Haider & Marcelo Hamaguchi & Esa Vakkilainen, 2021. "Evaluation of the Energy Efficiency Improvement Potential through Back-End Heat Recovery in the Kraft Recovery Boiler," Energies, MDPI, vol. 14(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:1881-:d:218109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.