IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8526-d704957.html
   My bibliography  Save this article

Design and Optimization of a Radial Inflow Turbine for Use with a Low Temperature ORC

Author

Listed:
  • Richard Symes

    (School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane City, QLD 4000, Australia)

  • Tchable-Nan Djaname

    (Laboratoire d’Ingénierie des Fluides et des Systèmes Energétiques (LIFSE), Arts et Metiers Institute of Technology, Conservatoire National des Arts et Métiers (CNAM), Hautes Écoles Sorbonne Arts et Métiers (HESAM) Université, F-75013 Paris, France)

  • Michael Deligant

    (Laboratoire d’Ingénierie des Fluides et des Systèmes Energétiques (LIFSE), Arts et Metiers Institute of Technology, Conservatoire National des Arts et Métiers (CNAM), Hautes Écoles Sorbonne Arts et Métiers (HESAM) Université, F-75013 Paris, France)

  • Emilie Sauret

    (School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane City, QLD 4000, Australia)

Abstract

This study aims to design and optimize an organic Rankine cycle (ORC) and radial inflow turbine to recover waste heat from a polymer exchange membrane (PEM) fuel cell. ORCs can take advantage of low-quality waste heat sources. Developments in this area have seen previously unusable, small waste heat sources become available for exploitation. Hydrogen PEM fuel cells operate at low temperatures (70 °C) and are in used in a range of applications, for example, as a balancing or backup power source in renewable hydrogen plants. The efficiency of an ORC is significantly affected by the source temperature and the efficiency of the expander. In this case, a radial inflow turbine was selected due to the high efficiency in ORCs with high density fluids. Small scale radial inflow turbines are of particular interest for improving the efficiency of small-scale low temperature cycles. Turbines generally have higher efficiency than positive displacement expanders, which are typically used. In this study, the turbine design from the mean-line analysis is also validated against the computational fluid dynamic (CFD) simulations conducted on the optimized machine. For the fuel cell investigated in this study, with a 5 kW electrical output, a potential additional 0.7 kW could be generated through the use of the ORC. The ORC’s output represents a possible 14% increase in performance over the fuel cell without waste heat recovery (WHR).

Suggested Citation

  • Richard Symes & Tchable-Nan Djaname & Michael Deligant & Emilie Sauret, 2021. "Design and Optimization of a Radial Inflow Turbine for Use with a Low Temperature ORC," Energies, MDPI, vol. 14(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8526-:d:704957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jintae & Kim, Minjin & Kang, Taegon & Sohn, Young-Jun & Song, Taewon & Choi, Kyoung Hwan, 2014. "Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells," Energy, Elsevier, vol. 66(C), pages 41-49.
    2. Syed Safeer Mehdi Shamsi & Assmelash A. Negash & Gyu Baek Cho & Young Min Kim, 2019. "Waste Heat and Water Recovery System Optimization for Flue Gas in Thermal Power Plants," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huijun Feng & Lingen Chen & Wei Tang & Yanlin Ge, 2022. "Optimal Design of a Dual-Pressure Steam Turbine for Rankine Cycle Based on Constructal Theory," Energies, MDPI, vol. 15(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    2. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    3. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2016. "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system," Energy, Elsevier, vol. 113(C), pages 1062-1070.
    4. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.
    5. Andraž Kravos & Ambrož Kregar & Kurt Mayer & Viktor Hacker & Tomaž Katrašnik, 2021. "Identifiability Analysis of Degradation Model Parameters from Transient CO 2 Release in Low-Temperature PEM Fuel Cell under Various AST Protocols," Energies, MDPI, vol. 14(14), pages 1-16, July.
    6. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    7. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    9. Wu, Horng-Wen & Ho, Tzu-Yi & Han, Yueh-Jung, 2021. "Parametric optimization of wall-mounted cuboid rows installed in interdigitated flow channel of HT-PEM fuel cells," Energy, Elsevier, vol. 216(C).
    10. Luqing Zhang & Aikang Chen & Han Gu & Xitian Wang & Da Xie & Chenghong Gu, 2019. "Planning of the Multi-Energy Circular System Coupled with Waste Processing Base: A Case from China," Energies, MDPI, vol. 12(20), pages 1-17, October.
    11. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    12. Young-Min Kim & Assmelash Negash & Syed Safeer Mehdi Shamsi & Dong-Gil Shin & Gyubaek Cho, 2021. "Experimental Study of a Lab-Scale Organic Rankine Cycle System for Heat and Water Recovery from Flue Gas in Thermal Power Plants," Energies, MDPI, vol. 14(14), pages 1-13, July.
    13. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2015. "Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system," Energy, Elsevier, vol. 80(C), pages 331-339.
    14. Kim, Eunji & Song, Seunghwan & Choi, Seoeun & Park, Jung Ock & Kim, Junghwan & Kwon, Kyungjung, 2021. "Parameter analysis from the modeling of high temperature proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 301(C).
    15. El-Hay, Enas A. & El-Hameed, Mohamed A. & El-Fergany, Attia A., 2018. "Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor," Energy, Elsevier, vol. 163(C), pages 699-711.
    16. Sun, Hong & Xie, Chen & Chen, Hao & Almheiri, Saif, 2015. "A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane," Applied Energy, Elsevier, vol. 160(C), pages 937-944.
    17. Zongming Yang & Victoria Kornienko & Mykola Radchenko & Andrii Radchenko & Roman Radchenko, 2022. "Research of Exhaust Gas Boiler Heat Exchange Surfaces with Reduced Corrosion When Water-Fuel Emulsion Combustion," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    18. Kun He & Dongchen Qin & Jiangyi Chen & Tingting Wang & Hongxia Wu & Peizhuo Wang, 2023. "Adaptive Equivalent Consumption Minimization Strategy for Fuel Cell Buses Based on Driving Style Recognition," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    19. Chen, Yusheng & Guo, Tong & Kainz, Josef & Kriegel, Martin & Gaderer, Matthias, 2022. "Design of a biomass-heating network with an integrated heat pump: A simulation-based multi-objective optimization framework," Applied Energy, Elsevier, vol. 326(C).
    20. Zhang, Caizhi & Liu, Zhitao & Zhang, Xiongwen & Chan, Siew Hwa & Wang, Youyi, 2016. "Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process," Energy, Elsevier, vol. 95(C), pages 425-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8526-:d:704957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.