IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4380-d598010.html
   My bibliography  Save this article

Identifiability Analysis of Degradation Model Parameters from Transient CO 2 Release in Low-Temperature PEM Fuel Cell under Various AST Protocols

Author

Listed:
  • Andraž Kravos

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia)

  • Ambrož Kregar

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
    Faculty of Education, University of Ljubljana, Kardeljeva Ploščad 16, 1000 Ljubljana, Slovenia)

  • Kurt Mayer

    (Institute of Chemical Engineering and Environmental Technologies, Graz University of Technology, Inffeldgasse 25C, 8010 Graz, Austria)

  • Viktor Hacker

    (Institute of Chemical Engineering and Environmental Technologies, Graz University of Technology, Inffeldgasse 25C, 8010 Graz, Austria)

  • Tomaž Katrašnik

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia)

Abstract

The detrimental effects of the catalyst degradation on the overall envisaged lifetime of low-temperature proton-exchange membrane fuel cells (LT-PEMFCs) represent a significant challenge towards further lowering platinum loadings and simultaneously achieving a long cycle life. The elaborated physically based modeling of the degradation processes is thus an invaluable step in elucidating causal interaction between fuel cell design, its operating conditions, and degradation phenomena. However, many parameters need to be determined based on experimental data to ensure plausible simulation results of the catalyst degradation models, which proves to be challenging with the in situ measurements. To fill this knowledge gap, this paper demonstrates the application of a mechanistically based PEMFC modeling framework, comprising real-time capable fuel cell performance, and platinum and carbon support degradation models, to model transient CO 2 release rates in the LT-PEMFCs with the consistent calibration of reaction rate parameters under multiple different accelerated stress tests at once. The results confirm the credibility of the physical and chemical modeling basis of the proposed modeling framework, as well as its prediction and extrapolation capabilities. This is confirmed by an increase of only 29% of root mean square deviations values when using a model calibrated on all three data sets at once in comparison to a model calibrated on only one data set. Furthermore, the unique identifiability and interconnection of individual model calibration parameters are determined via Fisher information matrix analysis. This analysis enables optimal reduction of the set of calibration parameters, which results in the speed up of both the calibration process and the general simulation time while retaining the full extrapolation capabilities of the framework.

Suggested Citation

  • Andraž Kravos & Ambrož Kregar & Kurt Mayer & Viktor Hacker & Tomaž Katrašnik, 2021. "Identifiability Analysis of Degradation Model Parameters from Transient CO 2 Release in Low-Temperature PEM Fuel Cell under Various AST Protocols," Energies, MDPI, vol. 14(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4380-:d:598010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jintae & Kim, Minjin & Kang, Taegon & Sohn, Young-Jun & Song, Taewon & Choi, Kyoung Hwan, 2014. "Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells," Energy, Elsevier, vol. 66(C), pages 41-49.
    2. Kregar, Ambrož & Tavčar, Gregor & Kravos, Andraž & Katrašnik, Tomaž, 2020. "Predictive system-level modeling framework for transient operation and cathode platinum degradation of high temperature proton exchange membrane fuel cells☆," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    2. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    3. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    4. Zhang, Caizhi & Liu, Zhitao & Zhang, Xiongwen & Chan, Siew Hwa & Wang, Youyi, 2016. "Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process," Energy, Elsevier, vol. 95(C), pages 425-432.
    5. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2016. "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system," Energy, Elsevier, vol. 113(C), pages 1062-1070.
    6. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.
    7. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    8. Guan, Dong & Pan, Biyu & Chen, Zhen & Li, Jing & Shen, Hui & Pang, Huan, 2023. "Quantitative modeling and bio-inspired optimization the clamping load on the bipolar plate in PEMFC," Energy, Elsevier, vol. 263(PD).
    9. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    11. Roshandel, Ramin & Parhizkar, Tarannom, 2016. "Degradation based optimization framework for long term applications of energy systems, case study: Solid oxide fuel cell stacks," Energy, Elsevier, vol. 107(C), pages 172-181.
    12. Wu, Horng-Wen & Ho, Tzu-Yi & Han, Yueh-Jung, 2021. "Parametric optimization of wall-mounted cuboid rows installed in interdigitated flow channel of HT-PEM fuel cells," Energy, Elsevier, vol. 216(C).
    13. Ryu, Sung Kwan & Vinothkannan, Mohanraj & Kim, Ae Rhan & Yoo, Dong Jin, 2022. "Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120–160 °C," Energy, Elsevier, vol. 238(PB).
    14. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    15. Richard Symes & Tchable-Nan Djaname & Michael Deligant & Emilie Sauret, 2021. "Design and Optimization of a Radial Inflow Turbine for Use with a Low Temperature ORC," Energies, MDPI, vol. 14(24), pages 1-16, December.
    16. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2015. "Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system," Energy, Elsevier, vol. 80(C), pages 331-339.
    17. Chen, Ben & Ke, Wandi & Luo, Maji & Wang, Jun & Tu, Zhengkai & Pan, Mu & Zhang, Haining & Liu, Xiaowei & Liu, Wei, 2015. "Operation characteristics and carbon corrosion of PEMFC (Proton exchange membrane fuel cell) with dead-ended anode for high hydrogen utilization," Energy, Elsevier, vol. 91(C), pages 799-806.
    18. Kim, Eunji & Song, Seunghwan & Choi, Seoeun & Park, Jung Ock & Kim, Junghwan & Kwon, Kyungjung, 2021. "Parameter analysis from the modeling of high temperature proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 301(C).
    19. El-Hay, Enas A. & El-Hameed, Mohamed A. & El-Fergany, Attia A., 2018. "Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor," Energy, Elsevier, vol. 163(C), pages 699-711.
    20. Sun, Hong & Xie, Chen & Chen, Hao & Almheiri, Saif, 2015. "A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane," Applied Energy, Elsevier, vol. 160(C), pages 937-944.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4380-:d:598010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.