IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2932-d253142.html
   My bibliography  Save this article

Optimal Load Dispatch in Competitive Electricity Market by Using Different Models of Hopfield Lagrange Network

Author

Listed:
  • Thanh Long Duong

    (Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

  • Phuong Duy Nguyen

    (Faculty of Electronics-Telecommunications, Saigon University, Ho Chi Minh City 700000, Vietnam)

  • Van-Duc Phan

    (Center of Excellence for Automation and Precision Mechanical Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam)

  • Dieu Ngoc Vo

    (Department of Power Systems, Ho Chi Minh City University of Technology, VNU-HCM, Ho Chi Minh City 700000, Vietnam)

  • Thang Trung Nguyen

    (Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

Abstract

In this paper, a Hopfield Lagrange network (HLN) method is applied to solve the optimal load dispatch (OLD) problem under the concern of the competitive electric market. The duty of the HLN is to determine optimal active power output of thermal generating units in the aim of maximizing the benefit of electricity generation from all available units. In addition, the performance of the HLN is also tested by using five different functions consisting of the logistic, hyperbolic tangent, Gompertz, error, and Gudermanian functions for updating outputs of continuous neurons. The five functions are tested on two systems with three units and 10 units considering two revenue models in which the first model considers payment for power delivered and the second model concerns payment for reserve allocated. In order to evaluate the real effectiveness and robustness of the HLN, comparisons with other methods such as particle swarm optimization (PSO), the cuckoo search algorithm (CSA) and differential evolution (DE) are also implemented on the same systems. High benefits and fast execution time from the HLN lead to a conclusion that the HLN should be applied for solving the OLD problem in a competitive electric market. Among the five applied functions, error function is considered to be the most effective one because it can support the HLN to find the highest benefit and reach the fastest convergence with the smallest number of iterations. Thus, it is suggested that error function should be used for updating outputs for continuous neurons of the HLN.

Suggested Citation

  • Thanh Long Duong & Phuong Duy Nguyen & Van-Duc Phan & Dieu Ngoc Vo & Thang Trung Nguyen, 2019. "Optimal Load Dispatch in Competitive Electricity Market by Using Different Models of Hopfield Lagrange Network," Energies, MDPI, vol. 12(15), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2932-:d:253142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thang Trung Nguyen & Bach Hoang Dinh & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "A Novel Algorithm for Optimal Operation of Hydrothermal Power Systems under Considering the Constraints in Transmission Networks," Energies, MDPI, vol. 11(1), pages 1-21, January.
    2. Thang Trung Nguyen & Dieu Ngoc Vo & Nguyen Vu Quynh & Le Van Dai, 2018. "Modified Cuckoo Search Algorithm: A Novel Method to Minimize the Fuel Cost," Energies, MDPI, vol. 11(6), pages 1-27, May.
    3. Le Chi Kien & Thang Trung Nguyen & Chiem Trong Hien & Minh Quan Duong, 2019. "A Novel Social Spider Optimization Algorithm for Large-Scale Economic Load Dispatch Problem," Energies, MDPI, vol. 12(6), pages 1-26, March.
    4. Dimitroulas, Dionisios K. & Georgilakis, Pavlos S., 2011. "A new memetic algorithm approach for the price based unit commitment problem," Applied Energy, Elsevier, vol. 88(12), pages 4687-4699.
    5. Ly Huu Pham & Minh Quan Duong & Van-Duc Phan & Thang Trung Nguyen & Hoang-Nam Nguyen, 2019. "A High-Performance Stochastic Fractal Search Algorithm for Optimal Generation Dispatch Problem," Energies, MDPI, vol. 12(9), pages 1-25, May.
    6. Adarsh, B.R. & Raghunathan, T. & Jayabarathi, T. & Yang, Xin-She, 2016. "Economic dispatch using chaotic bat algorithm," Energy, Elsevier, vol. 96(C), pages 666-675.
    7. Thang Trung Nguyen & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "Modified Differential Evolution Algorithm: A Novel Approach to Optimize the Operation of Hydrothermal Power Systems while Considering the Different Constraints and Valve Point Loading Effects," Energies, MDPI, vol. 11(3), pages 1-30, March.
    8. Hermans, Mathias & Bruninx, Kenneth & Vitiello, Silvia & Spisto, Amanda & Delarue, Erik, 2018. "Analysis on the interaction between short-term operating reserves and adequacy," Energy Policy, Elsevier, vol. 121(C), pages 112-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Chi Kien & Thanh Long Duong & Van-Duc Phan & Thang Trung Nguyen, 2020. "Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization," Sustainability, MDPI, vol. 12(3), pages 1-35, February.
    2. Dotzauer, Martin & Oehmichen, Katja & Thrän, Daniela & Weber, Christoph, 2022. "Empirical greenhouse gas assessment for flexible bioenergy in interaction with the German power sector," Renewable Energy, Elsevier, vol. 181(C), pages 1100-1109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Chi Kien & Thanh Long Duong & Van-Duc Phan & Thang Trung Nguyen, 2020. "Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization," Sustainability, MDPI, vol. 12(3), pages 1-35, February.
    2. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.
    3. Wen, Xin & Sun, Yuanliang & Tan, Qiaofeng & Tang, Zhengyang & Wang, Zhenni & Liu, Zhehua & Ding, Ziyu, 2022. "Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit," Applied Energy, Elsevier, vol. 306(PA).
    4. Wei Sun & Yufei Hou & Lanjiang Guo, 2018. "Analyzing and Forecasting Energy Consumption in China’s Manufacturing Industry and Its Subindustries," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
    5. Zelan Li & Yijia Cao & Le Van Dai & Xiaoliang Yang & Thang Trung Nguyen, 2019. "Finding Solutions for Optimal Reactive Power Dispatch Problem by a Novel Improved Antlion Optimization Algorithm," Energies, MDPI, vol. 12(15), pages 1-31, August.
    6. Syed Safeer Mehdi Shamsi & Assmelash A. Negash & Gyu Baek Cho & Young Min Kim, 2019. "Waste Heat and Water Recovery System Optimization for Flue Gas in Thermal Power Plants," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    7. Wei Sun & Junjian Zhang, 2020. "Carbon Price Prediction Based on Ensemble Empirical Mode Decomposition and Extreme Learning Machine Optimized by Improved Bat Algorithm Considering Energy Price Factors," Energies, MDPI, vol. 13(13), pages 1-22, July.
    8. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    9. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    10. Zhenlong Wu & Ting He & Li Sun & Donghai Li & Yali Xue, 2018. "The Facilitation of a Sustainable Power System: A Practice from Data-Driven Enhanced Boiler Control," Sustainability, MDPI, vol. 10(4), pages 1-21, April.
    11. Mario Šipoš & Zvonimir Klaić & Emmanuel Karlo Nyarko & Krešimir Fekete, 2021. "Determining the Optimal Location and Number of Voltage Dip Monitoring Devices Using the Binary Bat Algorithm," Energies, MDPI, vol. 14(1), pages 1-13, January.
    12. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    13. Sergey Voronin & Jarmo Partanen, 2013. "Price Forecasting in the Day-Ahead Energy Market by an Iterative Method with Separate Normal Price and Price Spike Frameworks," Energies, MDPI, vol. 6(11), pages 1-24, November.
    14. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    15. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    16. Oludamilare Bode Adewuyi & Ayooluwa Peter Adeagbo & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Yanxia Sun, 2021. "Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability," Energies, MDPI, vol. 14(22), pages 1-20, November.
    17. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    18. Al-Bahrani, Loau Tawfak & Chandra Patra, Jagdish, 2018. "Multi-gradient PSO algorithm for optimization of multimodal, discontinuous and non-convex fuel cost function of thermal generating units under various power constraints in smart power grid," Energy, Elsevier, vol. 147(C), pages 1070-1091.
    19. Tómasson, Egill & Söder, Lennart, 2020. "Coordinated optimal strategic demand reserve procurement in multi-area power systems," Applied Energy, Elsevier, vol. 270(C).
    20. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2932-:d:253142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.