IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2274-d239656.html
   My bibliography  Save this article

Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems

Author

Listed:
  • Jianzhong Xu

    (School of Economics and Management, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China)

  • Fu Yan

    (School of Economics and Management, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China)

  • Kumchol Yun

    (School of Economics and Management, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China
    Faculty of Mechanics, Kim Il Sung University, Pyongyang 950003, Democratic People’s Republic of Korea)

  • Lifei Su

    (College of Resources and Environment, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China)

  • Fengshu Li

    (School of Economics and Management, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China)

  • Jun Guan

    (College of Economics and Management, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China)

Abstract

The economic load dispatch (ELD) problem is a complex optimization problem in power systems. The main task for this optimization problem is to minimize the total fuel cost of generators while also meeting the conditional constraints of valve-point loading effects, prohibited operating zones, and nonsmooth cost functions. In this paper, a novel grey wolf optimization (GWO), abbreviated as NGWO, is proposed to solve the ELD problem by introducing an independent local search strategy and a noninferior solution neighborhood independent local search technique to the original GWO algorithm to achieve the best problem solution. A local search strategy is added to the standard GWO algorithm in the NGWO, which is called GWOI, to search the local neighborhood of the global optimal point in depth and to guarantee a better candidate. In addition, a noninferior solution neighborhood independent local search method is introduced into the GWOI algorithm to find a better solution in the noninferior solution neighborhood and ensure the high probability of jumping out of the local optimum. The feasibility of the proposed NGWO method is verified on five different power systems, and it is compared with other selected methods in terms of the solution quality, convergence rate, and robustness. The compared experimental results indicate that the proposed NGWO method can efficiently solve ELD problems with higher-quality solutions.

Suggested Citation

  • Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2274-:d:239656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiangtao Yu & Chang-Hwan Kim & Abdul Wadood & Tahir Khurshiad & Sang-Bong Rhee, 2018. "A Novel Multi-Population Based Chaotic JAYA Algorithm with Application in Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 11(8), pages 1-25, July.
    2. Adarsh, B.R. & Raghunathan, T. & Jayabarathi, T. & Yang, Xin-She, 2016. "Economic dispatch using chaotic bat algorithm," Energy, Elsevier, vol. 96(C), pages 666-675.
    3. Basu, M. & Chowdhury, A., 2013. "Cuckoo search algorithm for economic dispatch," Energy, Elsevier, vol. 60(C), pages 99-108.
    4. Niknam, Taher & Mojarrad, Hassan Doagou & Nayeripour, Majid, 2010. "A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch," Energy, Elsevier, vol. 35(4), pages 1764-1778.
    5. Niknam, Taher & Mojarrad, Hasan Doagou & Meymand, Hamed Zeinoddini & Firouzi, Bahman Bahmani, 2011. "A new honey bee mating optimization algorithm for non-smooth economic dispatch," Energy, Elsevier, vol. 36(2), pages 896-908.
    6. Niknam, Taher, 2010. "A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem," Applied Energy, Elsevier, vol. 87(1), pages 327-339, January.
    7. Jayabarathi, T. & Raghunathan, T. & Adarsh, B.R. & Suganthan, Ponnuthurai Nagaratnam, 2016. "Economic dispatch using hybrid grey wolf optimizer," Energy, Elsevier, vol. 111(C), pages 630-641.
    8. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Chi Kien & Thanh Long Duong & Van-Duc Phan & Thang Trung Nguyen, 2020. "Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization," Sustainability, MDPI, vol. 12(3), pages 1-35, February.
    2. Lingling Li & Jiarui Pei & Qiang Shen, 2023. "A Review of Research on Dynamic and Static Economic Dispatching of Hybrid Wind–Thermal Power Microgrids," Energies, MDPI, vol. 16(10), pages 1-23, May.
    3. Vikram Kumar Kamboj & Challa Leela Kumari & Sarbjeet Kaur Bath & Deepak Prashar & Mamoon Rashid & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2022. "A Cost-Effective Solution for Non-Convex Economic Load Dispatch Problems in Power Systems Using Slime Mould Algorithm," Sustainability, MDPI, vol. 14(5), pages 1-36, February.
    4. Aokang Pang & Huijun Liang & Chenhao Lin & Lei Yao, 2023. "A Surrogate-Assisted Adaptive Bat Algorithm for Large-Scale Economic Dispatch," Energies, MDPI, vol. 16(2), pages 1-23, January.
    5. Fu Yan & Jianzhong Xu & Kumchol Yun, 2019. "Dynamically Dimensioned Search Grey Wolf Optimizer Based on Positional Interaction Information," Complexity, Hindawi, vol. 2019, pages 1-36, December.
    6. Dinu Calin Secui & Cristina Hora & Codruta Bendea & Monica Liana Secui & Gabriel Bendea & Florin Ciprian Dan, 2024. "Modified Social Group Optimization to Solve the Problem of Economic Emission Dispatch with the Incorporation of Wind Power," Sustainability, MDPI, vol. 16(1), pages 1-35, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    2. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    3. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    4. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    5. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    6. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    7. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    8. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    9. Yaşar, Celal & Özyön, Serdar, 2011. "A new hybrid approach for nonconvex economic dispatch problem with valve-point effect," Energy, Elsevier, vol. 36(10), pages 5838-5845.
    10. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    11. Cai, Jiejin & Li, Qiong & Li, Lixiang & Peng, Haipeng & Yang, Yixian, 2012. "A hybrid FCASO-SQP method for solving the economic dispatch problems with valve-point effects," Energy, Elsevier, vol. 38(1), pages 346-353.
    12. Modiri-Delshad, Mostafa & Rahim, Nasrudin Abd, 2014. "Solving non-convex economic dispatch problem via backtracking search algorithm," Energy, Elsevier, vol. 77(C), pages 372-381.
    13. Salil Madhav Dubey & Hari Mohan Dubey & Surender Reddy Salkuti, 2022. "Modified Quasi-Opposition-Based Grey Wolf Optimization for Mathematical and Electrical Benchmark Problems," Energies, MDPI, vol. 15(15), pages 1-29, August.
    14. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.
    15. Zhang, Xian & Wang, Huaizhi & Peng, Jian-chun & Liu, Yitao & Wang, Guibin & Jiang, Hui, 2018. "GPNBI inspired MOSDE for electric power dispatch considering wind energy penetration," Energy, Elsevier, vol. 144(C), pages 404-419.
    16. Jayabarathi, T. & Raghunathan, T. & Adarsh, B.R. & Suganthan, Ponnuthurai Nagaratnam, 2016. "Economic dispatch using hybrid grey wolf optimizer," Energy, Elsevier, vol. 111(C), pages 630-641.
    17. Singh, Diljinder & Dhillon, J.S., 2019. "Ameliorated grey wolf optimization for economic load dispatch problem," Energy, Elsevier, vol. 169(C), pages 398-419.
    18. Tang, Jia & Wang, Dan & Wang, Xuyang & Jia, Hongjie & Wang, Chengshan & Huang, Renle & Yang, Zhanyong & Fan, Menghua, 2017. "Study on day-ahead optimal economic operation of active distribution networks based on Kriging model assisted particle swarm optimization with constraint handling techniques," Applied Energy, Elsevier, vol. 204(C), pages 143-162.
    19. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    20. Naila & Shaikh Saaqib Haroon & Shahzad Hassan & Salman Amin & Intisar Ali Sajjad & Asad Waqar & Muhammad Aamir & Muneeb Yaqoob & Imtiaz Alam, 2018. "Multiple Fuel Machines Power Economic Dispatch Using Stud Differential Evolution," Energies, MDPI, vol. 11(6), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2274-:d:239656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.