IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v201y2020ics0360544220306678.html
   My bibliography  Save this article

Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000 MW single reheat ultra-supercritical thermal power plant

Author

Listed:
  • Lin, Xiaolong
  • Li, Qinlun
  • Wang, Lukai
  • Guo, Yifan
  • Liu, Yinhe

Abstract

In this study, thermodynamic analysis of the bypass flue (BPF) thermal system and the “bypass flue integrated with steam-air heater (BPF-SAH)" thermal system is carried out by taking a 1000 MW single reheat ultra-supercritical coal-fired power plant as a case unit. Although these two typical thermal systems can improve the power supply efficiency of power plant to 43.68% and 43.74%, respectively, there is still excessive exergy loss in the air preheating process on the boiler side. To achieve better heat utilization of flue gas, a novel thermal system with integrated steam-air heaters (SAHs)is proposed. The thermodynamic analysis results show that the power supply efficiency of the integrated SAHs thermal system reaches 43.89%, which is 0.82% points higher than that of the case unit, and the integrated SAHs thermal system overcomes the shortcomings of these two typical thermal systems. Techno-economic analysis comparison of these three types of thermal systems reveals that the integrated SAHs thermal system shows the best techno-economic performance and is feasible in engineering, and the dynamic investment payback period and the net present value of the 30 years lifespan are 2.36 years and 20.412 million USD, respectively.

Suggested Citation

  • Lin, Xiaolong & Li, Qinlun & Wang, Lukai & Guo, Yifan & Liu, Yinhe, 2020. "Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220306678
    DOI: 10.1016/j.energy.2020.117560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220306678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaojun & He, Boshu & Sun, Shaoyang & Wu, Ying & Yan, Na & Yan, Linbo & Pei, Xiaohui, 2012. "Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant," Energy, Elsevier, vol. 48(1), pages 196-202.
    2. Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
    3. Wang, Chaojun & He, Boshu & Yan, Linbo & Pei, Xiaohui & Chen, Shinan, 2014. "Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant," Energy, Elsevier, vol. 65(C), pages 80-90.
    4. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    5. Stevanovic, Vladimir D. & Wala, Tadeusz & Muszynski, Slawomir & Milic, Milos & Jovanovic, Milorad, 2014. "Efficiency and power upgrade by an additional high pressure economizer installation at an aged 620 MWe lignite-fired power plant," Energy, Elsevier, vol. 66(C), pages 907-918.
    6. Ma, Youfu & Wang, Zirui & Lu, Junfu & Yang, Lijuan, 2018. "Techno-economic analysis of a novel hot air recirculation process for exhaust heat recovery from a 600 MW brown-coal-fired boiler," Energy, Elsevier, vol. 152(C), pages 348-357.
    7. Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
    8. Liu, Yinhe & Li, Qinlun & Duan, Xiaoli & Zhang, Yun & Yang, Zhen & Che, Defu, 2018. "Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 145(C), pages 25-37.
    9. Xu, Gang & Huang, Shengwei & Yang, Yongping & Wu, Ying & Zhang, Kai & Xu, Cheng, 2013. "Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas," Applied Energy, Elsevier, vol. 112(C), pages 907-917.
    10. Ma, Youfu & Yang, Lijuan & Lu, Junfu & Pei, Yufeng, 2016. "Techno-economic comparison of boiler cold-end exhaust gas heat recovery processes for efficient brown-coal-fired power generation," Energy, Elsevier, vol. 116(P1), pages 812-823.
    11. Espatolero, Sergio & Cortés, Cristóbal & Romeo, Luis M., 2010. "Optimization of boiler cold-end and integration with the steam cycle in supercritical units," Applied Energy, Elsevier, vol. 87(5), pages 1651-1660, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Yongjing & Duan, Liqiang & Yang, Ming & Pang, Liping, 2022. "Design optimization of a new supercritical CO2 single reheat coal-fired power generation system," Energy, Elsevier, vol. 239(PB).
    2. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    3. Tong, Yongjing & Duan, Liqiang & Pang, Liping, 2021. "Off-design performance analysis of a new 300 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 216(C).
    4. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    5. Lin, Xiaolong & Liu, Yinhe & Song, Huchao & Liu, Yugang, 2023. "System design for 700 °C power plants: Integration scheme and performance evaluation," Energy, Elsevier, vol. 267(C).
    6. Shan, Shiquan & Huang, Huadong & Chen, Binghong & Tian, Jialu & Zhang, Yanwei & Zhou, Zhijun, 2023. "A novel oxy-enrich near-field thermophotovoltaic system for sustainable fuel: Design guidelines and thermodynamic parametric analysis," Renewable Energy, Elsevier, vol. 211(C), pages 494-507.
    7. Shan, Shiquan & Tian, Jialu & Chen, Binghong & Zhang, Yanwei & Zhou, Zhijun, 2023. "Theoretical and technical analysis of the photo-thermal energy cascade conversion for fuel with high-temperature combustion," Energy, Elsevier, vol. 263(PD).
    8. Li, Xiaoguang & Zeng, Lingyan & Zhang, Ning & Zhang, Xin & Song, Minhang & Chen, Zhichao & Li, Zhengqi, 2022. "Effects of the gas/particle flow and combustion characteristics on water-wall temperature and energy conversion in a supercritical down-fired boiler at different secondary-air distributions," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
    2. Jiayou Liu & Xiaoyun Gong & Wenhua Zhang & Fengzhong Sun & Qingbiao Wang, 2020. "Experimental Study on a Flue Gas Waste Heat Cascade Recovery System under Variable Working Conditions," Energies, MDPI, vol. 13(2), pages 1-19, January.
    3. Ma, Youfu & Wang, Zirui & Lu, Junfu & Yang, Lijuan, 2018. "Techno-economic analysis of a novel hot air recirculation process for exhaust heat recovery from a 600 MW brown-coal-fired boiler," Energy, Elsevier, vol. 152(C), pages 348-357.
    4. Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
    5. Stevanovic, Vladimir D. & Petrovic, Milan M. & Wala, Tadeusz & Milivojevic, Sanja & Ilic, Milica & Muszynski, Slawomir, 2019. "Efficiency and power upgrade at the aged lignite-fired power plant by flue gas waste heat utilization: High pressure versus low pressure economizer installation," Energy, Elsevier, vol. 187(C).
    6. Wang, Xiang & Zhuo, Jiankun & Liu, Jianmin & Li, Shuiqing, 2020. "Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas," Applied Energy, Elsevier, vol. 261(C).
    7. Chen, Heng & Wu, Yunyun & Qi, Zhen & Chen, Qiao & Xu, Gang & Yang, Yongping & Liu, Wenyi, 2019. "Improved combustion air preheating design using multiple heat sources incorporating bypass flue in large-scale coal-fired power unit," Energy, Elsevier, vol. 169(C), pages 527-541.
    8. Jiayou Liu & Fengzhong Sun, 2019. "Node Temperature of the Coupled High-Low Energy Grade Flus Gas Waste Heat Recovery System," Energies, MDPI, vol. 12(2), pages 1-16, January.
    9. Liu, Yinhe & Li, Qinlun & Duan, Xiaoli & Zhang, Yun & Yang, Zhen & Che, Defu, 2018. "Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 145(C), pages 25-37.
    10. Ma, Youfu & Zhang, Hua & Yuan, Yichao & Wang, Zhiyun, 2015. "Optimization of a lignite-fired open pulverizing system boiler process based on variations in the drying agent composition," Energy, Elsevier, vol. 81(C), pages 304-316.
    11. Jiayou Liu & Fengzhong Sun, 2019. "Experimental Study on Operation Regulation of a Coupled High–Low Energy Flue Gas Waste Heat Recovery System Based on Exhaust Gas Temperature Control," Energies, MDPI, vol. 12(4), pages 1-20, February.
    12. Ma, Youfu & Yang, Lijuan & Lu, Junfu & Pei, Yufeng, 2016. "Techno-economic comparison of boiler cold-end exhaust gas heat recovery processes for efficient brown-coal-fired power generation," Energy, Elsevier, vol. 116(P1), pages 812-823.
    13. Yang, Mei & Liu, Chao, 2017. "The calculation of fluorine plastic economizer in economy by using the equivalent heat drop," Energy, Elsevier, vol. 135(C), pages 674-684.
    14. Xiao, Pengcheng & Zhang, Yanping & Wang, Yuanjing & Wang, Jizhou, 2019. "Analysis of an improved economizer system for active control of the coal-fired boiler flue gas temperature," Energy, Elsevier, vol. 170(C), pages 185-198.
    15. Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
    16. Ma, Youfu & Wang, Ziwen & Lyu, Junfu & Wang, Zirui, 2020. "Techno-economic evaluation of the novel hot air recirculation process for exhaust heat recovery from a 600 MW hard-coal-fired boiler," Energy, Elsevier, vol. 200(C).
    17. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    18. Meng Yue & Guoqian Ma & Yuetao Shi, 2020. "Analysis of Gas Recirculation Influencing Factors of a Double Reheat 1000 MW Unit with the Reheat Steam Temperature under Control," Energies, MDPI, vol. 13(16), pages 1-22, August.
    19. Feng, Yupeng & Li, Yuzhong & Cui, Lin & Yan, Lifan & Zhao, Cheng & Dong, Yong, 2019. "Cold condensing scrubbing method for fine particle reduction from saturated flue gas," Energy, Elsevier, vol. 171(C), pages 1193-1205.
    20. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220306678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.