IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp497-522.html
   My bibliography  Save this article

Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts

Author

Listed:
  • Santiago, Óscar
  • Navarro, Emilio
  • Raso, Miguel A.
  • Leo, Teresa J.

Abstract

Abiotically catalysed glucose fuel cells (AGFC) can take two different forms, external and implantable. They can be used to power computers, mobile phones and other portable low-power devices, and to power implantable medical devices such as pacemakers or devices for electrical stimulation. At present, the maximum power density of implantable AGFC is about 6μWcm−2 whereas the maximum power density of external ones is around 35mWcm−2. Despite this value is still lower than that obtained from direct methanol and ethanol fuel cells, abundance of glucose make glucose fuel cells an interesting option to be developed. To achieve its commercial application, it becomes necessary to improve their performance and lifespan. In recent times, there have been remarkable advances in catalytic materials, electrodes structure and fuel cell layout, which have enabled to improve the power density and the poisoning resistance of both AGFC types. A critical and quantitative analysis on implantable and external AGFC and their materials has been conducted in this review. In general, Pt is not a good catalyst for glucose oxidation due to its high poisoning facility, and protective membranes that prevent the poisoning or other catalysts such as bimetallic catalysts (Pd–Bi, Pt–Bi) should be used in implantable applications. In external glucose fuel cells, Pd, Ni and other transition metals are good catalysts for glucose oxidation in alkaline medium, even better than Pt is. Moreover, new substrates (Ni foams or multi-walled carbon nanotubes) and catalysts (hierarchical, 3D or hollow) structures with high active surface should be further investigated.

Suggested Citation

  • Santiago, Óscar & Navarro, Emilio & Raso, Miguel A. & Leo, Teresa J., 2016. "Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts," Applied Energy, Elsevier, vol. 179(C), pages 497-522.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:497-522
    DOI: 10.1016/j.apenergy.2016.06.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916309242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Achmad, F. & Kamarudin, S.K. & Daud, W.R.W. & Majlan, E.H., 2011. "Passive direct methanol fuel cells for portable electronic devices," Applied Energy, Elsevier, vol. 88(5), pages 1681-1689, May.
    2. Teresa J. Leo & Miguel A. Raso & Emilio Navarro & Eleuterio Mora, 2013. "Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends," Energies, MDPI, vol. 6(1), pages 1-12, January.
    3. Chin, K.L. & H’ng, P.S. & Wong, L.J. & Tey, B.T. & Paridah, M.T., 2011. "Production of glucose from oil palm trunk and sawdust of rubberwood and mixed hardwood," Applied Energy, Elsevier, vol. 88(11), pages 4222-4228.
    4. Kim, Jincheol & Kim, Taegyu, 2015. "Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source," Applied Energy, Elsevier, vol. 160(C), pages 945-953.
    5. Sue, Chung-Yang & Tsai, Nan-Chyuan, 2012. "Human powered MEMS-based energy harvest devices," Applied Energy, Elsevier, vol. 93(C), pages 390-403.
    6. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    7. Zakaria, Z. & Kamarudin, S.K. & Timmiati, S.N., 2016. "Membranes for direct ethanol fuel cells: An overview," Applied Energy, Elsevier, vol. 163(C), pages 334-342.
    8. Hwang, Jenn Jiang, 2012. "Review on development and demonstration of hydrogen fuel cell scooters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3803-3815.
    9. Liu, Xianhua & Hao, Miaoqing & Feng, Mengnan & Zhang, Lin & Zhao, Yong & Du, Xiwen & Wang, Guangyi, 2013. "A One-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator," Applied Energy, Elsevier, vol. 106(C), pages 176-183.
    10. Badwal, S.P.S. & Giddey, S. & Kulkarni, A. & Goel, J. & Basu, S., 2015. "Direct ethanol fuel cells for transport and stationary applications – A comprehensive review," Applied Energy, Elsevier, vol. 145(C), pages 80-103.
    11. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahari, Meisam & Malmberg, Michael A. & Brown, Daniel M. & Hadi Nazari, S. & Lewis, Randy S. & Watt, Gerald D. & Harb, John N., 2020. "Oxidation efficiency of glucose using viologen mediators for glucose fuel cell applications with non-precious anodes," Applied Energy, Elsevier, vol. 261(C).
    2. Violetta Vasilenko & Irina Arkadeva & Vera Bogdanovskaya & George Sudarev & Sergei Kalenov & Marco Vocciante & Eleonora Koltsova, 2020. "Glucose-Oxygen Biofuel Cell with Biotic and Abiotic Catalysts: Experimental Research and Mathematical Modeling," Energies, MDPI, vol. 13(21), pages 1-21, October.
    3. Xu, Zhiheng & Liu, Yucheng & Williams, Isaiah & Li, Yan & Qian, Fengyu & Wang, Lei & Lei, Yu & Li, Baikun, 2017. "Flat enzyme-based lactate biofuel cell integrated with power management system: Towards long term in situ power supply for wearable sensors," Applied Energy, Elsevier, vol. 194(C), pages 71-80.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    2. Li, Yang & Zhang, Xuelin & Yuan, Weijian & Zhang, Yufeng & Liu, Xiaowei, 2018. "A novel CO2 gas removal design for a micro passive direct methanol fuel cell," Energy, Elsevier, vol. 157(C), pages 599-607.
    3. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
    4. Zakaria, Z. & Kamarudin, S.K., 2016. "Direct conversion technologies of methane to methanol: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 250-261.
    5. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of physicochemical characterization of potassium-doped Nafion117 membrane and performance evaluation of air-breathing fuel cell in different alkali-methanol solutions," Energy, Elsevier, vol. 113(C), pages 1090-1098.
    6. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    7. Tong Liu, 2022. "Glucose Fuel Cells and Membranes: A Brief Overview and Literature Analysis," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    8. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Chung-Jen Chou & Shyh-Biau Jiang & Tse-Liang Yeh & Li-Duan Tsai & Ku-Yen Kang & Ching-Jung Liu, 2020. "A Portable Direct Methanol Fuel Cell Power Station for Long-Term Internet of Things Applications," Energies, MDPI, vol. 13(14), pages 1-13, July.
    10. Sánchez-Monreal, Juan & García-Salaberri, Pablo A. & Vera, Marcos, 2019. "A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Gomes, R.S. & De Bortoli, A.L., 2016. "A three-dimensional mathematical model for the anode of a direct ethanol fuel cell," Applied Energy, Elsevier, vol. 183(C), pages 1292-1301.
    12. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
    13. Ghomian, Taher & Kizilkaya, Orhan & Choi, Jin-Woo, 2018. "Lead sulfide colloidal quantum dot photovoltaic cell for energy harvesting from human body thermal radiation," Applied Energy, Elsevier, vol. 230(C), pages 761-768.
    14. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    15. Kim, Joon-Hee & Yang, Min-Jee & Park, Jun-Young, 2014. "Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly," Applied Energy, Elsevier, vol. 115(C), pages 95-102.
    16. Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
    17. Mehmood, Asad & Ha, Heung Yong, 2014. "Performance restoration of direct methanol fuel cells in long-term operation using a hydrogen evolution method," Applied Energy, Elsevier, vol. 114(C), pages 164-171.
    18. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    19. Ermete Antolini, 2017. "Pt-Ni and Pt-M-Ni (M = Ru, Sn) Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review," Energies, MDPI, vol. 10(1), pages 1-20, January.
    20. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:497-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.