IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8376-d858528.html
   My bibliography  Save this article

Glucose Fuel Cells and Membranes: A Brief Overview and Literature Analysis

Author

Listed:
  • Tong Liu

    (College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400030, China)

Abstract

Glucose is a ubiquitous source of energy for nearly all living things, and glucose fuel cells (GFCs) are regarded as a sustainable power source because glucose is renewable, easily available, cheap, abundant, non-toxic and easy-to-store. Numerous efforts have been devoted to developing and improving GFC performance; however, there is still no commercially viable devices on the market. Membranes play an essential role in GFCs for the establishment of a suitable local microenvironment, selective ion conducting and prevention of substrate crossover. However, our knowledge on them is still limited, especially on how to achieve comparable efficacy with that of a biological system. This review article provides the first brief overview on these aspects, particularly keeping in sight the research trends, current challenges, and the future prospects. We aim to bring together literature analysis and technological discussion on GFCs and membranes by using bibliometrics, and provide new ideas for researchers in this field to overcome challenges on developing high-performance GFCs.

Suggested Citation

  • Tong Liu, 2022. "Glucose Fuel Cells and Membranes: A Brief Overview and Literature Analysis," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8376-:d:858528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    2. Ogungbemi, Emmanuel & Ijaodola, Oluwatosin & Khatib, F.N. & Wilberforce, Tabbi & El Hassan, Zaki & Thompson, James & Ramadan, Mohamad & Olabi, A.G., 2019. "Fuel cell membranes – Pros and cons," Energy, Elsevier, vol. 172(C), pages 155-172.
    3. Jiao Wang & Xiaohui Zhang & Yang Li & Peng Liu & Xiaochen Chen & Pingping Zhang & Zhiyun Wang & Xianhua Liu, 2021. "Sweet Drinks as Fuels for an Alkaline Fuel Cell with Nonprecious Catalysts," Energies, MDPI, vol. 14(1), pages 1-11, January.
    4. Qiaoyun Yang & Dan Yang & Peng Li & Shilu Liang & Zhenghu Zhang & Guangdong Wu, 2021. "Resilient City: A Bibliometric Analysis and Visualization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-17, May.
    5. Wei Liu & Wei Mu & Mengjie Liu & Xiaodan Zhang & Hongli Cai & Yulin Deng, 2014. "Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    6. Liu, Xianhua & Hao, Miaoqing & Feng, Mengnan & Zhang, Lin & Zhao, Yong & Du, Xiwen & Wang, Guangyi, 2013. "A One-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator," Applied Energy, Elsevier, vol. 106(C), pages 176-183.
    7. Sue, Chung-Yang & Tsai, Nan-Chyuan, 2012. "Human powered MEMS-based energy harvest devices," Applied Energy, Elsevier, vol. 93(C), pages 390-403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santiago, Óscar & Navarro, Emilio & Raso, Miguel A. & Leo, Teresa J., 2016. "Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts," Applied Energy, Elsevier, vol. 179(C), pages 497-522.
    2. Bongsug (Kevin) Chae, 2022. "Mapping the Evolution of Digital Business Research: A Bibliometric Review," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    3. Zeng, Ying & Liu, Xinyi & Zhang, Xinyuan & Li, Zhiyong, 2024. "Retrospective of interdisciplinary research on robot services (1954–2023): From parasitism to symbiosis," Technology in Society, Elsevier, vol. 78(C).
    4. Ada P. Smith & Sechindra Vallury & Elizabeth Covelli Metcalf, 2023. "Social dimensions of adaptation to climate change in rangelands: a systematic literature review," Climatic Change, Springer, vol. 176(12), pages 1-24, December.
    5. Cha, Dowon & Yang, Wonseok & Kim, Yongchan, 2019. "Performance improvement of self-humidifying PEM fuel cells using water injection at various start-up conditions," Energy, Elsevier, vol. 183(C), pages 514-524.
    6. Merve Anaç & Gulden Gumusburun Ayalp & Kamil Erdayandi, 2023. "Prefabricated Construction Risks: A Holistic Exploration through Advanced Bibliometric Tool and Content Analysis," Sustainability, MDPI, vol. 15(15), pages 1-31, August.
    7. Quan-Hoang Vuong & Huyen Thanh T. Nguyen & Thanh-Hang Pham & Manh-Toan Ho & Minh-Hoang Nguyen, 2021. "Assessing the ideological homogeneity in entrepreneurial finance research by highly cited publications," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    8. Khayet, Mohamed & Aytaç, Ersin & Essalhi, Mohamed & Cipollina, Andrea & García-Fernández, Loreto & Contreras-Martínez, Jorge & García-Payo, Carmen & Ruiz-García, Alejandro & Figoli, Alberto, 2025. "Elucidating the dynamics of salinity gradient energy research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
    9. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    10. Maksym Obrizan, 2018. "Economists in Ukraine: who are they and where do they publish?," Working Papers 3181, Research Consulting and Development.
    11. Hongxia Jin & Lu Lu & Haojun Fan, 2022. "Global Trends and Research Hotspots in Long COVID: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
    12. Charlie Karlsson & Björn Hammarfelt, 2025. "Correction: The growth and development of Nordic regional science research 1982–2022: bibliometric evidence from thirteen regional science journals," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 74(2), pages 1-1, June.
    13. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
    14. Zoltán Lakner & Brigitta Plasek & Gyula Kasza & Anna Kiss & Sándor Soós & Ágoston Temesi, 2021. "Towards Understanding the Food Consumer Behavior–Food Safety–Sustainability Triangle: A Bibliometric Approach," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    15. Ying Liang & Wei Song, 2022. "Ecological and Environmental Effects of Land Use and Cover Changes on the Qinghai-Tibetan Plateau: A Bibliometric Review," Land, MDPI, vol. 11(12), pages 1-23, November.
    16. Lanzalonga Federico & Chmet Federico & Petrolo Basilio & Brescia Valerio, 2023. "Exploring Diversity Management to Avoid Social Washing and Pinkwashing: Using Bibliometric Analysis to Shape Future Research Directions," Journal of Intercultural Management, Sciendo, vol. 15(1), pages 41-65, March.
    17. Md. Nazmus Sakib & Md. Akmol Uddin & Towhida Akter Kona & Kanta Sharmin & Md. Mizanur Rahman & Mohammad Sahabuddin, 2025. "A twenty-two-year journey of sustainable human resource management research: bibliometric analysis," Future Business Journal, Springer, vol. 11(1), pages 1-16, December.
    18. Jussi T. S. Heikkila, 2020. "Classifying economics for the common good: Connecting sustainable development goals to JEL codes," Papers 2004.04384, arXiv.org.
    19. Wirapong Chansanam & Chunqiu Li, 2022. "Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    20. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8376-:d:858528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.