IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5630-d435886.html
   My bibliography  Save this article

Glucose-Oxygen Biofuel Cell with Biotic and Abiotic Catalysts: Experimental Research and Mathematical Modeling

Author

Listed:
  • Violetta Vasilenko

    (Department of Informational Computing Technologies, D. Mendeleev University of Chemical Technology of Russia (MUCTR), Miusskaya sq. 9, 125047 Moscow, Russia)

  • Irina Arkadeva

    (Department of Informational Computing Technologies, D. Mendeleev University of Chemical Technology of Russia (MUCTR), Miusskaya sq. 9, 125047 Moscow, Russia)

  • Vera Bogdanovskaya

    (Laboratory of Electrocatalysis, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS), Leninsky Prospect 31, 199071 Moscow, Russia)

  • George Sudarev

    (Laboratory of Electrocatalysis, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS), Leninsky Prospect 31, 199071 Moscow, Russia)

  • Sergei Kalenov

    (Department of Biotechnology, D. Mendeleev University of Chemical Technology of Russia (MUCTR), Miusskaya sq. 9, 125047 Moscow, Russia)

  • Marco Vocciante

    (Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genova, Italy)

  • Eleonora Koltsova

    (Department of Informational Computing Technologies, D. Mendeleev University of Chemical Technology of Russia (MUCTR), Miusskaya sq. 9, 125047 Moscow, Russia)

Abstract

The demand for alternative sources of clean, sustainable, and renewable energy has been a focus of research around the world for the past few decades. Microbial/enzymatic biofuel cells are one of the popular technologies for generating electricity from organic substrates. Currently, one of the promising fuel options is based on glucose due to its multiple advantages: high energy intensity, environmental friendliness, low cost, etc. The effectiveness of biofuel cells is largely determined by the activity of biocatalytic systems applied to accelerate electrode reactions. For this work with aerobic granular sludge as a basis, a nitrogen-fixing community of microorganisms has been selected. The microorganisms were immobilized on a carbon material (graphite foam, carbon nanotubes). The bioanode was developed from a selected biological material. A membraneless biofuel cell glucose/oxygen, with abiotic metal catalysts and biocatalysts based on a microorganism community and enzymes, has been developed. Using methods of laboratory electrochemical studies and mathematical modeling, the physicochemical phenomena and processes occurring in the cell has been studied. The mathematical model includes equations for the kinetics of electrochemical reactions and the growth of microbiological population, the material balance of the components, and charge balance. The results of calculations of the distribution of component concentrations over the thickness of the active layer and over time are presented. The data obtained from the model calculations correspond to the experimental ones. Optimization for fuel concentration has been carried out.

Suggested Citation

  • Violetta Vasilenko & Irina Arkadeva & Vera Bogdanovskaya & George Sudarev & Sergei Kalenov & Marco Vocciante & Eleonora Koltsova, 2020. "Glucose-Oxygen Biofuel Cell with Biotic and Abiotic Catalysts: Experimental Research and Mathematical Modeling," Energies, MDPI, vol. 13(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5630-:d:435886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santiago, Óscar & Navarro, Emilio & Raso, Miguel A. & Leo, Teresa J., 2016. "Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts," Applied Energy, Elsevier, vol. 179(C), pages 497-522.
    2. Der-Sheng Chan & Der-Jong Dai & Ho-Shing Wu, 2012. "Dynamic Modeling of Anode Function in Enzyme-Based Biofuel Cells Using High Mediator Concentration," Energies, MDPI, vol. 5(7), pages 1-21, July.
    3. Oliveira, V.B. & Simões, M. & Melo, L.F. & Pinto, A.M.F.R., 2013. "A 1D mathematical model for a microbial fuel cell," Energy, Elsevier, vol. 61(C), pages 463-471.
    4. Yin Song & Varun Penmatsa & Chunlei Wang, 2014. "Modeling and Simulation of Enzymatic Biofuel Cells with Three-Dimensional Microelectrodes," Energies, MDPI, vol. 7(7), pages 1-16, July.
    5. Ivan Ivanov & Tanja Vidaković-Koch & Kai Sundmacher, 2010. "Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling," Energies, MDPI, vol. 3(4), pages 1-44, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dario Pelosi & Linda Barelli & Nicolò Montegiove & Eleonora Calzoni & Alessio Cesaretti & Alessandro Di Michele & Carla Emiliani & Luca Gammaitoni, 2022. "Immobilizing Enzymes on a Commercial Polymer: Performance Analysis of a GOx-Laccase Based Enzymatic Biofuel Cell Assembly," Energies, MDPI, vol. 15(6), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dario Pelosi & Linda Barelli & Nicolò Montegiove & Eleonora Calzoni & Alessio Cesaretti & Alessandro Di Michele & Carla Emiliani & Luca Gammaitoni, 2022. "Immobilizing Enzymes on a Commercial Polymer: Performance Analysis of a GOx-Laccase Based Enzymatic Biofuel Cell Assembly," Energies, MDPI, vol. 15(6), pages 1-12, March.
    2. Theofilos Kamperidis & Asimina Tremouli & Antonis Peppas & Gerasimos Lyberatos, 2022. "A 2D Modelling Approach for Predicting the Response of a Two-Chamber Microbial Fuel Cell to Substrate Concentration and Electrolyte Conductivity Changes," Energies, MDPI, vol. 15(4), pages 1-15, February.
    3. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
    4. Sona Kazemi & Melissa Barazandegan & Madjid Mohseni & Khalid Fatih, 2016. "Systematic Study of Separators in Air-Breathing Flat-Plate Microbial Fuel Cells—Part 2: Numerical Modeling," Energies, MDPI, vol. 9(2), pages 1-16, January.
    5. Hidalgo, Diana & Tommasi, Tonia & Cauda, Valentina & Porro, Samuele & Chiodoni, Angelica & Bejtka, Katarzyna & Ruggeri, Bernardo, 2014. "Streamlining of commercial Berl saddles: A new material to improve the performance of microbial fuel cells," Energy, Elsevier, vol. 71(C), pages 615-623.
    6. Ortiz-Martínez, V.M. & Salar-García, M.J. & Touati, K. & Hernández-Fernández, F.J. & de los Ríos, A.P. & Belhoucine, F. & Berrabbah, A. Alioua, 2016. "Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells," Energy, Elsevier, vol. 113(C), pages 1241-1249.
    7. Tafaoli-Masoule, M. & Bahrami, A. & Elsayed, E.M., 2014. "Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm," Energy, Elsevier, vol. 70(C), pages 643-652.
    8. Ismail, Zainab Z. & Habeeb, Ali A., 2017. "Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers," Renewable Energy, Elsevier, vol. 101(C), pages 1256-1265.
    9. Bahari, Meisam & Malmberg, Michael A. & Brown, Daniel M. & Hadi Nazari, S. & Lewis, Randy S. & Watt, Gerald D. & Harb, John N., 2020. "Oxidation efficiency of glucose using viologen mediators for glucose fuel cell applications with non-precious anodes," Applied Energy, Elsevier, vol. 261(C).
    10. Ortiz-Martínez, V.M. & Salar-García, M.J. & Hernández-Fernández, F.J. & de los Ríos, A.P., 2015. "Development and characterization of a new embedded ionic liquid based membrane-cathode assembly for its application in single chamber microbial fuel cells," Energy, Elsevier, vol. 93(P2), pages 1748-1757.
    11. Petr Procházka & Vladimír Hönig, 2018. "Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants," Energies, MDPI, vol. 11(3), pages 1-12, February.
    12. Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
    13. Linda Barelli & Gianni Bidini & Dario Pelosi & Elena Sisani, 2021. "Enzymatic Biofuel Cells: A Review on Flow Designs," Energies, MDPI, vol. 14(4), pages 1-26, February.
    14. Garg, A. & Lam, Jasmine Siu Lee, 2017. "Design of explicit models for estimating efficiency characteristics of microbial fuel cells," Energy, Elsevier, vol. 134(C), pages 136-156.
    15. Ihor Sobianin & Sotiria D. Psoma & Antonios Tourlidakis, 2022. "Recent Advances in Energy Harvesting from the Human Body for Biomedical Applications," Energies, MDPI, vol. 15(21), pages 1-24, October.
    16. Chen, Yingwen & Xu, Yuan & Chen, Liuliu & Li, Peiwen & Zhu, Shemin & Shen, Shubao, 2015. "Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes," Energy, Elsevier, vol. 88(C), pages 377-384.
    17. Xu, Zhiheng & Liu, Yucheng & Williams, Isaiah & Li, Yan & Qian, Fengyu & Wang, Lei & Lei, Yu & Li, Baikun, 2017. "Flat enzyme-based lactate biofuel cell integrated with power management system: Towards long term in situ power supply for wearable sensors," Applied Energy, Elsevier, vol. 194(C), pages 71-80.
    18. Der-Sheng Chan & Der-Jong Dai & Ho-Shing Wu, 2012. "Dynamic Modeling of Anode Function in Enzyme-Based Biofuel Cells Using High Mediator Concentration," Energies, MDPI, vol. 5(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5630-:d:435886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.