IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v154y2015icp40-50.html
   My bibliography  Save this article

Experimental study of heat transfer enhancement in a liquid piston compressor/expander using porous media inserts

Author

Listed:
  • Yan, Bo
  • Wieberdink, Jacob
  • Shirazi, Farzad
  • Li, Perry Y.
  • Simon, Terrence W.
  • Van de Ven, James D.

Abstract

The efficiency and power density of gas compression and expansion are strongly dependent on heat transfer during the process. Since porous media inserts can significantly increase heat transfer surface area, their addition to a liquid piston compressor/expander has been hypothesized to reduce the time to complete the compression or expansion process and hence the power density for a given thermodynamic efficiency; or to increase the thermodynamic efficiency at a fixed power density. This paper presents an experimental investigation on heat transfer with porous inserts during compression for a pressure ratio of 10 and during expansion for a pressure ratio of 6. A baseline case without inserts and five cases with different porous inserts are tested in a compression experiment: 3 interrupted ABS inserts with plate spacing of 2.5, 5, and 10mm and 2 aluminum foam inserts sized with 10 and 40 pores per inch. The 2.5mm and 5mm interrupted plate inserts were also tested in expansion experiments. Porous inserts are found, in compression, to increase power-density by 39-fold at 95% efficiency and to increase efficiency by 18% at 100kW/m3 power density; in expansion, power density is increased three fold at 89% efficiency, and efficiency is increased by 7% at 150kW/m3. Surface area increase is found to be the predominant cause in the improvement in performance. Thus, a liquid piston compressor/expander together with a porous medium may be used in applications requiring high compression ratios, high efficiencies, and high power density such as in an open-accumulator compressed air energy storage (CAES) system or a compressor for compressed natural gas (CNG).

Suggested Citation

  • Yan, Bo & Wieberdink, Jacob & Shirazi, Farzad & Li, Perry Y. & Simon, Terrence W. & Van de Ven, James D., 2015. "Experimental study of heat transfer enhancement in a liquid piston compressor/expander using porous media inserts," Applied Energy, Elsevier, vol. 154(C), pages 40-50.
  • Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:40-50
    DOI: 10.1016/j.apenergy.2015.04.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915005693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    2. Saadat, Mohsen & Shirazi, Farzad A. & Li, Perry Y., 2015. "Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines," Applied Energy, Elsevier, vol. 137(C), pages 603-616.
    3. Niksiar, Arezou & Rahimi, Amir, 2009. "Energy and exergy analysis for cocurrent gas spray cooling systems based on the results of mathematical modeling and simulation," Energy, Elsevier, vol. 34(1), pages 14-21.
    4. Qin, Chao & Loth, Eric, 2014. "Liquid piston compression efficiency with droplet heat transfer," Applied Energy, Elsevier, vol. 114(C), pages 539-550.
    5. Van de Ven, James D. & Li, Perry Y., 2009. "Liquid piston gas compression," Applied Energy, Elsevier, vol. 86(10), pages 2183-2191, October.
    6. Kim, Young-Min & Shin, Dong-Gil & Lee, Sun-Youp & Favrat, Daniel, 2013. "Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage," Energy, Elsevier, vol. 49(C), pages 484-501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patil, Vikram C. & Acharya, Pinaki & Ro, Paul I., 2020. "Experimental investigation of water spray injection in liquid piston for near-isothermal compression," Applied Energy, Elsevier, vol. 259(C).
    2. Wieberdink, Jacob & Li, Perry Y. & Simon, Terrence W. & Van de Ven, James D., 2018. "Effects of porous media insert on the efficiency and power density of a high pressure (210 bar) liquid piston air compressor/expander – An experimental study," Applied Energy, Elsevier, vol. 212(C), pages 1025-1037.
    3. Barah Ahn & Paul I. Ro, 2023. "Experimental Investigation of Impacts of Initial Pressure Levels on Compression Efficiency and Dissolution in Liquid Piston Gas Compression," Energies, MDPI, vol. 16(4), pages 1-28, February.
    4. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    5. Teng Ren & Weiqing Xu & Maolin Cai & Xiaoshuang Wang & Minghan Li, 2019. "Experiments on Air Compression with an Isothermal Piston for Energy Storage," Energies, MDPI, vol. 12(19), pages 1-13, September.
    6. Amiri, Leyla & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P., 2018. "Effect of buoyancy-driven natural convection in a rock-pit mine air preconditioning system acting as a large-scale thermal energy storage mass," Applied Energy, Elsevier, vol. 221(C), pages 268-279.
    7. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    8. Gouda, El Mehdi & Neu, Thibault & Benaouicha, Mustapha & Fan, Yilin & Subrenat, Albert & Luo, Lingai, 2023. "Experimental and numerical investigation on the flow and heat transfer behaviors during a compression–cooling–expansion cycle using a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 277(C).
    9. Chen, Guo & Kuang, Rao & Li, Wen & Cui, Kunpeng & Fu, Deran & Yang, Zecheng & Liu, Zhenfei & Huang, Heyi & Yu, Mingqi & Shen, Yijun, 2024. "Numerical study on efficiency and robustness of wave energy converter-power take-off system for compressed air energy storage," Renewable Energy, Elsevier, vol. 232(C).
    10. Olusola Fajinmi & Josiah L. Munda & Yskandar Hamam & Olawale Popoola, 2023. "Compressed Air Energy Storage as a Battery Energy Storage System for Various Application Domains: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.
    11. Barah Ahn & Vikram C. Patil & Paul I. Ro, 2021. "Effect of Integrating Metal Wire Mesh with Spray Injection for Liquid Piston Gas Compression," Energies, MDPI, vol. 14(13), pages 1-23, June.
    12. Hu, Shiwei & Zhang, Xinjing & Xu, Weiqing & Cai, Maolin & Xu, Yujie & Chen, Haisheng, 2024. "Experimental study of tube-array-based liquid piston air compressor for near-isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 373(C).
    13. Heidari, Mahbod & Mortazavi, Mehdi & Rufer, Alfred, 2017. "Design, modeling and experimental validation of a novel finned reciprocating compressor for Isothermal Compressed Air Energy Storage applications," Energy, Elsevier, vol. 140(P1), pages 1252-1266.
    14. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    15. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery," Applied Energy, Elsevier, vol. 357(C).
    16. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wieberdink, Jacob & Li, Perry Y. & Simon, Terrence W. & Van de Ven, James D., 2018. "Effects of porous media insert on the efficiency and power density of a high pressure (210 bar) liquid piston air compressor/expander – An experimental study," Applied Energy, Elsevier, vol. 212(C), pages 1025-1037.
    2. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    3. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    4. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    5. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    6. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    7. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    8. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    9. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    10. Siraj Sabihuddin & Aristides E. Kiprakis & Markus Mueller, 2014. "A Numerical and Graphical Review of Energy Storage Technologies," Energies, MDPI, vol. 8(1), pages 1-45, December.
    11. Qin, Chao & Innes-Wimsatt, Elijah & Loth, Eric, 2016. "Hydraulic-electric hybrid wind turbines: Tower mass saving and energy storage capacity," Renewable Energy, Elsevier, vol. 99(C), pages 69-79.
    12. Leszczyński, Jacek S. & Gryboś, Dominik & Markowski, Jan, 2023. "Analysis of optimal expansion dynamics in a reciprocating drive for a micro-CAES production system," Applied Energy, Elsevier, vol. 350(C).
    13. V. E. Shcherba & A. Khait & E. A. Pavlyuchenko & I. Yu. Bulgakova, 2023. "Development and Research of a Promising Pumpless Liquid Cooling System for Reciprocating Compressors," Energies, MDPI, vol. 16(3), pages 1-26, January.
    14. Zhang, Yi & Xu, Yujie & Guo, Huan & Zhang, Xinjing & Guo, Cong & Chen, Haisheng, 2018. "A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations," Renewable Energy, Elsevier, vol. 125(C), pages 121-132.
    15. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Graham, Samuel & Momen, Ayyoub M., 2018. "Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage (GLIDES) system," Applied Energy, Elsevier, vol. 221(C), pages 75-85.
    16. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    17. Maia, Thales A.C. & Barros, José E.M. & Cardoso Filho, Braz J. & Porto, Matheus P., 2016. "Experimental performance of a low cost micro-CAES generation system," Applied Energy, Elsevier, vol. 182(C), pages 358-364.
    18. Patil, Vikram C. & Acharya, Pinaki & Ro, Paul I., 2020. "Experimental investigation of water spray injection in liquid piston for near-isothermal compression," Applied Energy, Elsevier, vol. 259(C).
    19. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
    20. Olusola Fajinmi & Josiah L. Munda & Yskandar Hamam & Olawale Popoola, 2023. "Compressed Air Energy Storage as a Battery Energy Storage System for Various Application Domains: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:154:y:2015:i:c:p:40-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.