IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v154y2015icp1112-1121.html
   My bibliography  Save this article

Bioenergy production from algae using dairy manure as a nutrient source: Life cycle energy and greenhouse gas emission analysis

Author

Listed:
  • Chowdhury, Raja
  • Freire, Fausto

Abstract

This study estimated the potential of algal bioenergy production using nitrogen and phosphorus present in the dairy manure (produced in the US). State wise dairy manure production and energy mixes were used to estimate algal bioenergy production and associated life cycle nonrenewable primary energy demand and greenhouse gas emissions for the four scenarios. These scenarios were constructed using various combination of following processes (i) anaerobic digestion, (ii) algal biodiesel production using effluent from (i), (iii) pyrolysis, and (iv) enzymatic hydrolysis. Bioenergy production, nonrenewable primary energy demand and greenhouse gas emissions of each state were aggregated to estimate the total bioenergy production, nonrenewable primary energy requirement and greenhouse gas emissions for the US. Two different cases were simulated for each scenario, one without taking into account the nutrient values (N, P) of applied sludge generated from the bioenergy production (Case B) while in the other one, nutrient values of sludge were considered (Case A). For incorporation of nutrient values of sludge, system expansion approach was used. It was estimated that by using dairy manure, 0.56 billion GJ/yr bioenergy could be produced. Minimum “nonrenewable primary energy requirement (NRPER)” (GJ/GJ) [Total primary nonrenewable energy requirement/bioenergy produced] and GHG emissions (kg CO2 eq./GJ bioenergy produced) for the four scenarios (1–4) for case B were as follows (1) 0.37, 27 (2) 0.51, −30; (3) 0.55, 47 and (4) 0.70, 15 respectively. In case A, NRPER did not change as compared to case B. GHG emissions increased in case A scenarios as compared to case B scenarios. The increase in GHG emission was mostly due to incorporation of reference scenario (raw dairy manure was applied on the ground) and N2O emission from the sludge amended soil.

Suggested Citation

  • Chowdhury, Raja & Freire, Fausto, 2015. "Bioenergy production from algae using dairy manure as a nutrient source: Life cycle energy and greenhouse gas emission analysis," Applied Energy, Elsevier, vol. 154(C), pages 1112-1121.
  • Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:1112-1121
    DOI: 10.1016/j.apenergy.2015.05.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915006558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.05.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sturm, Belinda S.M. & Lamer, Stacey L., 2011. "An energy evaluation of coupling nutrient removal from wastewater with algal biomass production," Applied Energy, Elsevier, vol. 88(10), pages 3499-3506.
    2. Wang, Xiaoqiang & Nordlander, Eva & Thorin, Eva & Yan, Jinyue, 2013. "Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden," Applied Energy, Elsevier, vol. 112(C), pages 478-484.
    3. Ehimen, E.A. & Sun, Z.F. & Carrington, C.G. & Birch, E.J. & Eaton-Rye, J.J., 2011. "Anaerobic digestion of microalgae residues resulting from the biodiesel production process," Applied Energy, Elsevier, vol. 88(10), pages 3454-3463.
    4. Abou-Shanab, Reda A.I. & Hwang, Jae-Hoon & Cho, Yunchul & Min, Booki & Jeon, Byong-Hun, 2011. "Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production," Applied Energy, Elsevier, vol. 88(10), pages 3300-3306.
    5. Shafiee, Shahriar & Topal, Erkan, 2008. "An econometrics view of worldwide fossil fuel consumption and the role of US," Energy Policy, Elsevier, vol. 36(2), pages 775-786, February.
    6. Ehimen, E.A. & Holm-Nielsen, J.-B. & Poulsen, M. & Boelsmand, J.E., 2013. "Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae," Renewable Energy, Elsevier, vol. 50(C), pages 476-480.
    7. Chiaramonti, David & Prussi, Matteo & Casini, David & Tredici, Mario R. & Rodolfi, Liliana & Bassi, Niccolò & Zittelli, Graziella Chini & Bondioli, Paolo, 2013. "Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible," Applied Energy, Elsevier, vol. 102(C), pages 101-111.
    8. Renó, Maria Luiza Grillo & Lora, Electo Eduardo Silva & Palacio, José Carlos Escobar & Venturini, Osvaldo José & Buchgeister, Jens & Almazan, Oscar, 2011. "A LCA (life cycle assessment) of the methanol production from sugarcane bagasse," Energy, Elsevier, vol. 36(6), pages 3716-3726.
    9. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    10. Rizzo, Andrea Maria & Prussi, Matteo & Bettucci, Lorenzo & Libelli, Ilaria Marsili & Chiaramonti, David, 2013. "Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior," Applied Energy, Elsevier, vol. 102(C), pages 24-31.
    11. Cai, Ting & Park, Stephen Y. & Racharaks, Ratanachat & Li, Yebo, 2013. "Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production," Applied Energy, Elsevier, vol. 108(C), pages 486-492.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lim, Teng & Massey, Ray & McCann, Laura & Canter, Timothy & Omura, Seabrook & Willett, Cammy & Roach, Alice & Key, Nigel & Dodson, Laura, 2023. "Increasing the Value of Manure for Farmers," USDA Miscellaneous 333552, United States Department of Agriculture.
    2. Jiang, Xuemei & Guan, Dabo, 2016. "Determinants of global CO2 emissions growth," Applied Energy, Elsevier, vol. 184(C), pages 1132-1141.
    3. Raja Chowdhury & Nidia Caetano & Matthew J. Franchetti & Kotnoor Hariprasad, 2023. "Life Cycle Based GHG Emissions from Algae Based Bioenergy with a Special Emphasis on Climate Change Indicators and Their Uses in Dynamic LCA: A Review," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    4. Swati Dahiya & Raja Chowdhury & Pradeep Kumar & Sanjoy Ghosh & Asha Srinivasan, 2022. "Recovery of Sugar and Nutrients from Algae and Colocasia esculenta (Taro) Leaves Using Chemical Hydrolysis," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    5. Saumya Verma & Raja Chowdhury & Sarat K. Das & Matthew J. Franchetti & Gang Liu, 2021. "Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation," Sustainability, MDPI, vol. 13(21), pages 1-28, October.
    6. Raja Chowdhury & Vivek Agarwal, 2024. "Mathematical Models and Dynamic Global Warming Potential Calculation for Estimating the Role of Organic Amendment in Net-Zero Goal Achievement," Energies, MDPI, vol. 17(19), pages 1-17, September.
    7. Swati Dahiya & Raja Chowdhury & Wendong Tao & Pradeep Kumar, 2021. "Biomass and Lipid Productivity by Two Algal Strains of Chlorella sorokiniana Grown in Hydrolysate of Water Hyacinth," Energies, MDPI, vol. 14(5), pages 1-21, March.
    8. Togarcheti, Sarat Chandra & Mediboyina, Maneesh kumar & Chauhan, Vikas Singh & Mukherji, Suparna & Ravi, Sarada & Mudliar, Sandeep Narayan, 2017. "Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 286-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    2. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    3. Zhu, Liandong & Hiltunen, Erkki & Shu, Qing & Zhou, Weizheng & Li, Zhaohua & Wang, Zhongming, 2014. "Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid," Applied Energy, Elsevier, vol. 128(C), pages 103-110.
    4. Mendez, Lara & Mahdy, Ahmed & Ballesteros, Mercedes & González-Fernández, Cristina, 2014. "Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads," Applied Energy, Elsevier, vol. 129(C), pages 238-242.
    5. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    6. Paniagua, S. & Escudero, L. & Escapa, C. & Coimbra, R.N. & Otero, M. & Calvo, L.F., 2016. "Effect of waste organic amendments on Populus sp biomass production and thermal characteristics," Renewable Energy, Elsevier, vol. 94(C), pages 166-174.
    7. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    8. Kumar, Kanhaiya & Ghosh, Supratim & Angelidaki, Irini & Holdt, Susan L. & Karakashev, Dimitar B. & Morales, Merlin Alvarado & Das, Debabrata, 2016. "Recent developments on biofuels production from microalgae and macroalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 235-249.
    9. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    10. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    11. Ajeej, Amritha & Thanikal, Joseph V & Narayanan, C M & Senthil Kumar, R., 2015. "An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 270-276.
    12. Shafiee, Shahriar & Topal, Erkan, 2010. "A long-term view of worldwide fossil fuel prices," Applied Energy, Elsevier, vol. 87(3), pages 988-1000, March.
    13. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    14. Abu-Ghosh, Said & Fixler, Dror & Dubinsky, Zvy & Iluz, David, 2015. "Energy-input analysis of the life-cycle of microalgal cultivation systems and best scenario for oil-rich biomass production," Applied Energy, Elsevier, vol. 154(C), pages 1082-1088.
    15. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    16. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    17. Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
    18. Jankowska, Ewelina & Sahu, Ashish K. & Oleskowicz-Popiel, Piotr, 2017. "Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 692-709.
    19. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    20. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:154:y:2015:i:c:p:1112-1121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.