IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v129y2014icp195-206.html
   My bibliography  Save this article

Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels

Author

Listed:
  • Singh, Shuchi
  • Khanna, Swati
  • Moholkar, Vijayanand S.
  • Goyal, Arun

Abstract

Parthenium hysterophorus world’s seven most devastating and hazardous weeds, and is abundantly available in several parts of the world. This study treats the subject of effective utilization of this waste biomass (which has cellulose content of 45.2±1.81% w/w) for biofuels production. We have presented a comprehensive and comparative assessment of numerous pretreatment strategies for P. hysterophorus, comprising of all major physical, chemical and physicochemical methods. The yardstick of assessment has been amount of fermentable sugars released during the pretreatment and the post-treatment enzymatic hydrolysis of pretreated biomass. Carboxymethylcellulase (1.0U/mg, 1.7mg/mL) produced by an isolate Bacillus amyloliquefaciens SS35 and β-glucosidase (Novozyme 188), have been used for enzymatic hydrolysis of pretreated biomass. Among the different methods employed for pretreatment, the most efficient treatment has been revealed to be autoclaving of biomass at 121°C and 15psi pressure for 30min in acidic (1% v/v, H2SO4) environment. Total reducing sugar (TRS) yield during this pretreatment, mainly due to hydrolysis of hemicellulosic fraction of biomass, has been 285.3mg/g of raw biomass. Further enzymatic hydrolysis resulted in reducing sugar yield of 187.4mg/g of pretreated biomass (9.37g/L). The total fermentable sugar (TFS) yield from the optimized pretreatment was 397.7mg/g raw biomass (39.77g/100g raw biomass). The effects of different pretreatment methods on biomass structure and complexity were investigated by field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques. Comparative assessment of the results with pretreatment and hydrolysis of other conventional agro- and forest residues shows that P. hysterophorus has same potential for being the feedstock for biofuels. These results conclusively demonstrate the utility of P. hysterophorus for sustainable biofuels production.

Suggested Citation

  • Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
  • Handle: RePEc:eee:appene:v:129:y:2014:i:c:p:195-206
    DOI: 10.1016/j.apenergy.2014.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914004991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Yishui & Zhao, Lixin & Meng, Haibo & Sun, Liying & Yan, Jinyue, 2009. "Estimation of un-used land potential for biofuels development in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 77-85, November.
    2. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    3. Ranjan, Amrita & Khanna, Swati & Moholkar, V.S., 2013. "Feasibility of rice straw as alternate substrate for biobutanol production," Applied Energy, Elsevier, vol. 103(C), pages 32-38.
    4. Barakat, Abdellatif & Chuetor, Santi & Monlau, Florian & Solhy, Abderrahim & Rouau, Xavier, 2014. "Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis," Applied Energy, Elsevier, vol. 113(C), pages 97-105.
    5. Kumar, Manish & Goyal, Yogesh & Sarkar, Abhijit & Gayen, Kalyan, 2012. "Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks," Applied Energy, Elsevier, vol. 93(C), pages 193-204.
    6. Dias, M.O.S. & Junqueira, T.L. & Jesus, C.D.F. & Rossell, C.E.V. & Maciel Filho, R. & Bonomi, A., 2012. "Improving bioethanol production – Comparison between extractive and low temperature fermentation," Applied Energy, Elsevier, vol. 98(C), pages 548-555.
    7. Fraioli, Valentina & Mancaruso, Ezio & Migliaccio, Marianna & Vaglieco, Bianca Maria, 2014. "Ethanol effect as premixed fuel in dual-fuel CI engines: Experimental and numerical investigations," Applied Energy, Elsevier, vol. 119(C), pages 394-404.
    8. Zheng, Yi & Lee, Christopher & Yu, Chaowei & Cheng, Yu-Shen & Zhang, Ruihong & Jenkins, Bryan M. & VanderGheynst, Jean S., 2013. "Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol," Applied Energy, Elsevier, vol. 105(C), pages 1-7.
    9. Santori, Giulio & Di Nicola, Giovanni & Moglie, Matteo & Polonara, Fabio, 2012. "A review analyzing the industrial biodiesel production practice starting from vegetable oil refining," Applied Energy, Elsevier, vol. 92(C), pages 109-132.
    10. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production," Applied Energy, Elsevier, vol. 94(C), pages 129-140.
    11. Rizzo, Andrea Maria & Prussi, Matteo & Bettucci, Lorenzo & Libelli, Ilaria Marsili & Chiaramonti, David, 2013. "Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior," Applied Energy, Elsevier, vol. 102(C), pages 24-31.
    12. Ho, Cheng-Yu & Chang, Jui-Jen & Lee, Shih-Chi & Chin, Tsu-Yuan & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2012. "Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast," Applied Energy, Elsevier, vol. 100(C), pages 27-32.
    13. Cabanelas, Iago Teles Dominguez & Arbib, Zouhayr & Chinalia, Fábio A. & Souza, Carolina Oliveira & Perales, José A. & Almeida, Paulo Fernando & Druzian, Janice Izabel & Nascimento, Iracema Andrade, 2013. "From waste to energy: Microalgae production in wastewater and glycerol," Applied Energy, Elsevier, vol. 109(C), pages 283-290.
    14. Lima, Clebson S.S. & Conceição, Marta M. & Silva, Flávio L.H. & Lima, Ezenildo E. & Conrado, Líbia S. & Leão, Douglas A.S., 2013. "Characterization of acid hydrolysis of sisal," Applied Energy, Elsevier, vol. 102(C), pages 254-259.
    15. Sindhu, Raveendran & Kuttiraja, Mathiyazhakan & Binod, Parameswaran & Sukumaran, Rajeev Kumar & Pandey, Ashok, 2014. "Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology," Renewable Energy, Elsevier, vol. 62(C), pages 362-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Youjie & Wang, Donghai, 2017. "Integrating starchy substrate into cellulosic ethanol production to boost ethanol titers and yields," Applied Energy, Elsevier, vol. 195(C), pages 196-203.
    2. Schneider, Willian Daniel Hahn & Fontana, Roselei Claudete & Baudel, Henrique Macedo & de Siqueira, Félix Gonçalves & Rencoret, Jorge & Gutiérrez, Ana & de Eugenio, Laura Isabel & Prieto, Alicia & Mar, 2020. "Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield," Applied Energy, Elsevier, vol. 262(C).
    3. Barakat, Abdellatif & Monlau, Florian & Solhy, Abderrahim & Carrere, Hélène, 2015. "Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement," Applied Energy, Elsevier, vol. 142(C), pages 240-246.
    4. Tavva, S.S. Mohan Dev & Deshpande, Amol & Durbha, Sanjeeva Rao & Palakollu, V. Arjuna Rao & Goparaju, A. Uttam & Yechuri, V. Rao & Bandaru, V. Rao & Muktinutalapati, V. Subba Rao, 2016. "Bioethanol production through separate hydrolysis and fermentation of Parthenium hysterophorus biomass," Renewable Energy, Elsevier, vol. 86(C), pages 1317-1323.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schneider, Willian Daniel Hahn & Fontana, Roselei Claudete & Baudel, Henrique Macedo & de Siqueira, Félix Gonçalves & Rencoret, Jorge & Gutiérrez, Ana & de Eugenio, Laura Isabel & Prieto, Alicia & Mar, 2020. "Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield," Applied Energy, Elsevier, vol. 262(C).
    2. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    3. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    4. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    5. Wang, Pixiang & Chen, Yong Mei & Wang, Yifen & Lee, Yoon Y. & Zong, Wenming & Taylor, Steven & McDonald, Timothy & Wang, Yi, 2019. "Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum ," Applied Energy, Elsevier, vol. 236(C), pages 551-559.
    6. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    7. Barakat, Abdellatif & Monlau, Florian & Solhy, Abderrahim & Carrere, Hélène, 2015. "Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement," Applied Energy, Elsevier, vol. 142(C), pages 240-246.
    8. Barakat, Abdellatif & Chuetor, Santi & Monlau, Florian & Solhy, Abderrahim & Rouau, Xavier, 2014. "Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis," Applied Energy, Elsevier, vol. 113(C), pages 97-105.
    9. Zheng, Jin & Tashiro, Yukihiro & Wang, Qunhui & Sakai, Kenji & Sonomoto, Kenji, 2015. "Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation," Applied Energy, Elsevier, vol. 140(C), pages 113-119.
    10. Pazuch, Felix Augusto & Nogueira, Carlos Eduardo Camargo & Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Friedrich, Leandro & Lenz, Anderson Miguel, 2017. "Economic evaluation of the replacement of sugar cane bagasse by vinasse, as a source of energy in a power plant in the state of Paraná, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 34-42.
    11. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    12. Olusegun David Samuel & Peter A. Aigba & Thien Khanh Tran & H. Fayaz & Carlo Pastore & Oguzhan Der & Ali Erçetin & Christopher C. Enweremadu & Ahmad Mustafa, 2023. "Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    13. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.
    14. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    15. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    16. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    17. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    18. Daegi Kim & Kunio Yoshikawa & Ki Young Park, 2015. "Characteristics of Biochar Obtained by Hydrothermal Carbonization of Cellulose for Renewable Energy," Energies, MDPI, vol. 8(12), pages 1-9, December.
    19. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    20. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:129:y:2014:i:c:p:195-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.