IDEAS home Printed from
   My bibliography  Save this article

Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks


  • Kumar, Manish
  • Goyal, Yogesh
  • Sarkar, Abhijit
  • Gayen, Kalyan


Biobutanol can become the replacement of petroleum gasoline in near future. However, economic feasibility of biobutanol production from ABE fermentation is suffering due to the unavailability of cheap feedstocks, production inhibition and inefficient product recovery processes. Here, economic analysis of ABE fermentation has been performed based on cellulosic (bagasse, barley straw, wheat straw, corn stover, and switchgrass) and non-cellulosic (glucose, sugarcane, corn, and sago) feedstocks, which are widely and cheaply available in agriculture based countries. Analysis shows that utilization of glucose required 37% lesser total fixed capital cost than the other cellulosic and non-cellulosic feedstocks for the per year production of 10,000 tonnes of butanol. However, the production cost of butanol from glucose was fourfold higher than sugarcane and cellulosic materials because of its (glucose) high cost. The cost of sago also affected threefold production cost of butanol comparative to other feedstocks. Therefore, these two substrates turned the biobutanol production far from being economically feasible. Interestingly, sugarcane and cellulosic materials showed suitability for economically feasible production of butanol with the production cost range of $0.59–$0.75 per kg butanol. Consequently, quantitative variation in the design and process parameters namely fermentor size, plant capacity, production yield using sugarcane and cellulosic materials as raw materials, trigger significant reduction in unitary cost of butanol up to 53%, 19%, and 31% respectively. Therefore, these parameters will play significant role in making the butanol production economical from cheaper feedstocks (sugarcane and cellulosic materials). Further, high sensitivity of production cost from the product yield postulates significant manipulation in genome of butanol producing bacteria for improving the yield of ABE fermentation.

Suggested Citation

  • Kumar, Manish & Goyal, Yogesh & Sarkar, Abhijit & Gayen, Kalyan, 2012. "Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks," Applied Energy, Elsevier, vol. 93(C), pages 193-204.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:193-204
    DOI: 10.1016/j.apenergy.2011.12.079

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    2. Zhou, Adrian & Thomson, Elspeth, 2009. "The development of biofuels in Asia," Applied Energy, Elsevier, vol. 86(Supplemen), pages 11-20, November.
    3. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    4. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    5. Kumar, Manish & Gayen, Kalyan, 2011. "Developments in biobutanol production: New insights," Applied Energy, Elsevier, vol. 88(6), pages 1999-2012, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    2. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    3. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    4. Zheng, Jin & Tashiro, Yukihiro & Wang, Qunhui & Sakai, Kenji & Sonomoto, Kenji, 2015. "Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation," Applied Energy, Elsevier, vol. 140(C), pages 113-119.
    5. Ho, Cheng-Yu & Chang, Jui-Jen & Lee, Shih-Chi & Chin, Tsu-Yuan & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2012. "Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast," Applied Energy, Elsevier, vol. 100(C), pages 27-32.
    6. Cheng, Chieh-Lun & Che, Pei-Yi & Chen, Bor-Yann & Lee, Wen-Jhy & Lin, Chiu-Yue & Chang, Jo-Shu, 2012. "Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora," Applied Energy, Elsevier, vol. 100(C), pages 3-9.
    7. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    8. Jafari, Yadollah & Amiri, Hamid & Karimi, Keikhosro, 2016. "Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse," Applied Energy, Elsevier, vol. 168(C), pages 216-225.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:193-204. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.