IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6899-d920465.html
   My bibliography  Save this article

Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation

Author

Listed:
  • Wojciech Dziemianowicz

    (Department of Distillery Technology and Renewable Energy, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, Powstańców Wielkopolskich 17, 85-090 Bydgoszcz, Poland)

  • Katarzyna Kotarska

    (Department of Distillery Technology and Renewable Energy, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, Powstańców Wielkopolskich 17, 85-090 Bydgoszcz, Poland)

  • Anna Świerczyńska

    (Department of Distillery Technology and Renewable Energy, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, Powstańców Wielkopolskich 17, 85-090 Bydgoszcz, Poland)

Abstract

In this study, two types of fermentation methods: SSF and consolidation SHF/SSF were used for production of acetone-butanol-ethanol (ABE) from corn straw as a feedstock. Clostridium acetobutylicum DSM1731 was used as the fermenting organism. Corn straw was thermochemically pretreated and then hydrolyzed using three types of enzymes. The impact has been investigated on the effect of mineral compounds supplementation ((NH 4 ) 2 SO 4 , MgSO 4 , (NH 4 ) 3 PO 4 ) on ABE productivity and butanol content. From the SSF, where mineral salts were supplemented into the fermentation medium, it was found that the maximum ABE and butanol concentrations were 28.35 g/L and 24.03 g/L, respectively, corresponding to a productivities of 0.295 g/L/h (ABE) and 0.250 g/L/h (butanol). In the consolidation SHF/SSF method with mineral compounds supplementation, the maximum ABE and butanol concentrations were 31.35 g/L and 28.64 g/L, respectively, corresponding to productivities of 0.327 g/L/h (ABE) and 0.298 g/L/h (butanol). Compared to control samples, mineral salts supplementation had a positive effect on cellular metabolic activities, leading to an earlier initiation of the solventogenesis stage. In supplemented samples, an increase in the rate of ABE fermentation by Clostridium was observed.

Suggested Citation

  • Wojciech Dziemianowicz & Katarzyna Kotarska & Anna Świerczyńska, 2022. "Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation," Energies, MDPI, vol. 15(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6899-:d:920465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim, Mohamad Faizal & Abd-Aziz, Suraini & Yusoff, Mohd. Ezreeza Mohamed & Phang, Lai Yee & Hassan, Mohd Ali, 2015. "Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel," Renewable Energy, Elsevier, vol. 77(C), pages 447-455.
    2. Kumar, Manish & Goyal, Yogesh & Sarkar, Abhijit & Gayen, Kalyan, 2012. "Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks," Applied Energy, Elsevier, vol. 93(C), pages 193-204.
    3. Cheng, Chieh-Lun & Che, Pei-Yi & Chen, Bor-Yann & Lee, Wen-Jhy & Lin, Chiu-Yue & Chang, Jo-Shu, 2012. "Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora," Applied Energy, Elsevier, vol. 100(C), pages 3-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Jin & Tashiro, Yukihiro & Wang, Qunhui & Sakai, Kenji & Sonomoto, Kenji, 2015. "Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation," Applied Energy, Elsevier, vol. 140(C), pages 113-119.
    2. Wang, Pixiang & Chen, Yong Mei & Wang, Yifen & Lee, Yoon Y. & Zong, Wenming & Taylor, Steven & McDonald, Timothy & Wang, Yi, 2019. "Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum ," Applied Energy, Elsevier, vol. 236(C), pages 551-559.
    3. Huzir, Nurhamieza Md & Aziz, Md Maniruzzaman A. & Ismail, S.B. & Abdullah, Bawadi & Mahmood, Nik Azmi Nik & Umor, N.A. & Syed Muhammad, Syed Anuar Faua’ad, 2018. "Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 476-485.
    4. Cho, Seong-Heon & Kim, Juyeon & Han, Jeehoon & Lee, Daewon & Kim, Hyung Ju & Kim, Yong Tae & Cheng, Xun & Xu, Ye & Lee, Jechan & Kwon, Eilhann E., 2019. "Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    6. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    7. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    8. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    9. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    10. Pinto, T. & Flores-Alsina, X. & Gernaey, K.V. & Junicke, H., 2021. "Alone or together? A review on pure and mixed microbial cultures for butanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Tsai, Tsung-Yu & Lo, Yung-Chung & Dong, Cheng-Di & Nagarajan, Dillirani & Chang, Jo-Shu & Lee, Duu-Jong, 2020. "Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum," Applied Energy, Elsevier, vol. 277(C).
    12. Li, Gang & Lee, Timothy H. & Liu, Zhien & Lee, Chiafon F. & Zhang, Chunhua, 2019. "Effects of injection strategies on combustion and emission characteristics of a common-rail diesel engine fueled with isopropanol-butanol-ethanol and diesel blends," Renewable Energy, Elsevier, vol. 130(C), pages 677-686.
    13. Rezaei, Mahbobe & Amiri, Hamid & Shafiei, Marzieh, 2021. "Aqueous pretreatment of triticale straw for integrated production of hemicellulosic methane and cellulosic butanol," Renewable Energy, Elsevier, vol. 171(C), pages 971-980.
    14. Suhartini, Sri & Rohma, Novita Ainur & Mardawati, Efri & Kasbawati, & Hidayat, Nur & Melville, Lynsey, 2022. "Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    16. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    17. Kwon, Oseok & Kim, Juyeon & Han, Jeehoon, 2022. "Organic waste derived biodiesel supply chain network: Deterministic multi-period planning model," Applied Energy, Elsevier, vol. 305(C).
    18. Dehghanzad, Mahsa & Shafiei, Marzieh & Karimi, Keikhosro, 2020. "Whole sweet sorghum plant as a promising feedstock for biobutanol production via biorefinery approaches: Techno-economic analysis," Renewable Energy, Elsevier, vol. 158(C), pages 332-342.
    19. Ho, Cheng-Yu & Chang, Jui-Jen & Lee, Shih-Chi & Chin, Tsu-Yuan & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2012. "Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast," Applied Energy, Elsevier, vol. 100(C), pages 27-32.
    20. Katarzyna Kotarska & Wojciech Dziemianowicz & Anna Świerczyńska, 2021. "The Effect of Detoxification of Lignocellulosic Biomass for Enhanced Methane Production," Energies, MDPI, vol. 14(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6899-:d:920465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.